
Package ‘WGCNA’
January 26, 2009

Version 0.67-2

Date 2009-01-26

Title Weighted Gene Co-Expression Network Analysis

Author Peter Langfelder <Peter.Langfelder@gmail.com> and Steve Horvath
<SHorvath@mednet.ucla.edu>

Maintainer Peter Langfelder <Peter.Langfelder@gmail.com>

Depends R (>= 2.3.0), stats, fields, impute, grDevices, dynamicTreeCut (>= 1.12), qvalue, utils

ZipData no

License GPL (>= 2)

Description Functions necessary to perform Weighted Gene Co-Expression Network Analysis

URL http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/BranchCutting/

R topics documented:
addErrorBars . 3
addGrid . 4
addGuideLines . 5

0.1 Warning . 5
addTraitToMEs . 6
adjacency . 7
alignExpr . 8
automaticNetworkScreeningGS . 9
automaticNetworkScreening . 10

0.2 Warning . 11
bicor . 12
blockwiseConsensusModules . 13
blockwiseModules . 19
checkAdjMat . 23
checkSets . 24
clusterCoef . 25
collectGarbage . 25
colQuantileC . 26
consensusMEDissimilarity . 26

1

2 R topics documented:

consensusOrderMEs . 27
consensusProjectiveKMeans . 28
corPredictionSuccess . 30

0.3 Warning . 31
corPvalueFisher . 32
corPvalueStudent . 33
correlationPreservation . 34
cutreeStaticColor . 35
cutreeStatic . 35
displayColors . 36
dynamicMergeCut . 37
exportNetworkToCytoscape . 38
exportNetworkToVisANT . 39
fixDataStructure . 40
goodGenesMS . 41
goodGenes . 42
goodSamplesGenesMS . 43
goodSamplesGenes . 44
goodSamplesMS . 45
goodSamples . 46
greenBlackRed . 48
greenWhiteRed . 48
GTOMdist . 49
hubGeneSignificance . 50
Inline display of progress . 51
intramodularConnectivity . 52
keepCommonProbes . 53
labeledBarplot . 54
labeledHeatmap . 55
labels2colors . 58
mergeCloseModules . 59
moduleColor.getMEprefix . 61
moduleEigengenes . 62
moduleNumber . 65
multiSetMEs . 66
nearestNeighborConnectivityMS . 69
nearestNeighborConnectivity . 70
networkConcepts . 72
networkScreeningGS . 73

0.4 Warning . 73
networkScreening . 75

0.5 Warning . 76
normalizeLabels . 79
nPresent . 79
numbers2colors . 80
orderMEs . 81
pickHardThreshold . 82
pickSoftThreshold . 83
plotClusterTreeSamples . 85
plotColorUnderTree . 87
plotDendroAndColors . 88
plotEigengeneNetworks . 90

addErrorBars 3

plotMEpairs . 92
plotModuleSignificance . 93
plotNetworkHeatmap . 94
preservationNetworkConnectivity . 96
projectiveKMeans . 98
propVarExplained . 99
randIndex . 100

0.6 Warning . 101
recutBlockwiseTrees . 102
recutConsensusTrees . 105
redWhiteGreen . 109
relativeCorPredictionSuccess . 109

0.7 Warning . 110
removeGreyME . 111
scaleFreePlot . 112
setCorrelationPreservation . 113
sigmoidAdjacencyFunction . 114
signedKME . 115
signumAdjacencyFunction . 116
simulateDatExpr5Modules . 116
simulateDatExpr . 118
simulateEigengeneNetwork . 120
simulateModule . 121
simulateMultiExpr . 123

0.8 Warning . 124
simulateSmallLayer . 125
sizeGrWindow . 127
softConnectivity . 127
standardColors . 128
stdErr . 129
TOMplot . 130
TOMsimilarityFromExpr . 131
TOMsimilarity . 132
unsignedAdjacency . 133
vectorTOM . 134
verboseBoxplot . 135

0.9 Warning . 136
verboseScatterplot . 137

0.10 Warning . 138
WGCNA-package . 139

Index 143

addErrorBars Add error bars to a barplot.

Description

This function adds error bars to an existing barplot.

4 addGrid

Usage

addErrorBars(means, errors, two.side = FALSE)

Arguments

means vector of means plotted in the barplot

errors vector of standard errors (signle positive values) to be plotted.

two.side should the error bars be two-sided?

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

addGrid Add grid lines to an existing plot.

Description

This function adds horizontal and/or vertical grid lines to an existing plot. The grid lines are aligned
with tick marks.

Usage

addGrid(linesPerTick = NULL, horiz = TRUE, vert = FALSE, col = "grey", lty = 3)

Arguments

linesPerTick Number of lines between successive tick marks (including the line on the tick-
marks themselves)

horiz Draw horizontal grid lines?

vert Draw vertical tick lines?

col Specifies color of the grid lines

lty Specifies line type of grid lines. See par.

Details

If linesPerTick is not specified, it is set to 5 if number of tick s is 5 or less, and it is set to 2 if
number of ticks is greater than 5.

Note

The function does not work whenever logarithmic scales are in use.

Author(s)

Peter Langfelder

addGuideLines 5

Examples

plot(c(1:10), c(1:10))
addGrid();

addGuideLines Add vertical “guide lines” to a dendrogram plot

Description

Adds vertical “guide lines” to a dendrogram plot.

Usage

addGuideLines(dendro,
all = FALSE,
count = 50,
positions = NULL,
col = "grey60",
lty = 3,
hang = 0)

Arguments

dendro The dendrogram (see hclust) to which the guide lines are to be added.

all Add a guide line to every object on the dendrogram? Useful if the number of
objects is relatively low.

count Number of guide lines to be plotted. The lines will be equidistantly spaced.

positions Horizontal positions of the added guide lines. If given, overrides count.

col Color of the guide lines

lty Line type of the guide lines. See par.

hang Fraction of the figure height that will separate top ends of guide lines and the
merge heights of the corresponding objects.

Warning

....

Note

further notes

Make other sections like Warning with

0.1 Warning

....

Author(s)

Peter Langfelder

6 addTraitToMEs

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (dendro, all = FALSE, count = 50, positions = NULL,

col = "grey60", lty = 3, hang = 0)
{

if (all) {
positions = 1:(length(dendro$height) + 1)

}
else {

if (is.null(positions)) {
lineSpacing = (length(dendro$height) + 1)/count
positions = (1:count) * lineSpacing

}
}
objHeights = rep(0, length(dendro$height + 1))
objHeights[-dendro$merge[dendro$merge[, 1] < 0, 1]] = dendro$height[dendro$merge[,

1] < 0]
objHeights[-dendro$merge[dendro$merge[, 2] < 0, 2]] = dendro$height[dendro$merge[,

2] < 0]
box = par("usr")
ymin = box[3]
ymax = box[4]
objHeights = objHeights - hang * (ymax - ymin)
objHeights[objHeights < ymin] = ymin
posHeights = pmin(objHeights[dendro$order][floor(positions)],

objHeights[dendro$order][ceiling(positions)])
for (line in 1:length(positions)) lines(x = rep(positions[line],

2), y = c(ymin, posHeights[line]), lty = 3, col = col)
}

addTraitToMEs Add trait information to multi-set module eigengene structure

Description

Adds trait information to multi-set module eigengene structure.

Usage

addTraitToMEs(multiME, multiTraits)

Arguments

multiME Module eigengenes in multi-set format. A vector of lists, one list per set. Each
list must contain an element named data that is a data frame with module
eigengenes.

adjacency 7

multiTraits Microarray sample trait(s) in multi-set format. A vector of lists, one list per set.
Each list must contain an element named data that is a data frame in which
each column corresponds to a trait, and each row to an individual sample.

Details

The function simply cbind’s the module eigengenes and traits for each set. The number of sets
and numbers of samples in each set must be consistent between multiMEs and multiTraits.

Value

A multi-set structure analogous to the input: a vector of lists, one list per set. Each list will contain
a component data with the merged eigengenes and traits for the corresponding set.

Author(s)

Peter Langfelder

See Also

checkSets, moduleEigengenes

adjacency Calculate network adjacency

Description

Calculates network adjacency from given expression data.

Usage

adjacency(datExpr, selectCols = NULL, power = 6, type = "unsigned", corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr data frame containing expression data. Columns correspond to genes and rows
to samples.

selectCols can be used to select genes whose adjacencies will be calculated. Should be
either a numeric vector giving the indices of the genes to be used, or a boolean
vector indicating which genes are to be used.

power soft thresholding power.

type network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid".

corFnc character string specifying the function to be used to calculate co-expression
similarity. Defaults to Pearson correlation. Any function returning values be-
tween -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function
given by corFnc. Use "use = ’p’, method = ’Spearman’" to ob-
tain Spearman correlation.

8 alignExpr

Details

The function calculates the similarity of columns (genes) in datExpr by calling the function
given in corFnc, transforms the similarity according to type and raises it to power, resulting
in a weighted network adjacency matrix. If selectCols is given, the corFnc function will
be given arguments (datExpr, datExpr[selectCols], ...); hence the returned adja-
cency will have rows corresponding to all genes and columns corresponding to genes selected by
selectCols.

Value

Adjacency matrix of dimensions nrow(datExpr) times nrow(datExpr). If selectCols
was given, the number of columns will be the length (if numeric) or sum (if boolean) of selectCols.

Author(s)

Peter Langfelder and Steve Horvath

References

Bin Zhang and Steve Horvath (2005) A General Framework for Weighted Gene Co-Expression
Network Analysis, Statistical Applications in Genetics and Molecular Biology, Vol. 4 No. 1, Article
17

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

alignExpr Align expression data with given vector

Description

Multiplies genes (columns) in given expression data such that their correlation with given reference
vector is non-negative.

Usage

alignExpr(datExpr, y = NULL)

Arguments

datExpr expression data to be aligned. A data frame with columns corresponding to
genes and rows to samples.

y reference vector of length equal the number of samples (rows) in datExpr

Details

The function basically multiplies each column in datExpr by the sign of its correlation with y. If
y is not given, the first column in datExpr will be used as the reference vector.

Value

A data frame containing the aligned expression data, of the same dimensions as the input data frame.

automaticNetworkScreeningGS 9

Author(s)

Steve Horvath and Peter Langfelder

automaticNetworkScreeningGS
One-step automatic network gene screening with external gene signif-
icance

Description

This function performs gene screening based on external gene significance and their network prop-
erties.

Usage

automaticNetworkScreeningGS(
datExpr, GS,
power = 6, networkType = "unsigned",
detectCutHeight = 0.995, minModuleSize = min(20, ncol(as.matrix(datExpr))/2),
datME = NULL)

Arguments

datExpr data frame containing the expression data, columns corresponding to genes and
rows to samples

GS vector containing gene significance for all genes given in datExpr

power soft thresholding power used in network construction

networkType character string specifying network type. Allowed values are (unique abbrevia-
tions of) "unsigned", "signed", \code{"hybrid"}.

detectCutHeight
cut height of the gene hierarchical clustering dendrogram. See cutreeDynamic
for details.

minModuleSize
minimum module size to be used in module detection procedure.

datME optional specification of module eigengenes. A data frame whose columns are
the module eigengenes. If given, module analysis will not be performed.

Details

Network screening is a method for identifying genes that have a high gene significance and are
members of important modules at the same time. If datME is given, the function calls networkScreeningGS
with the default parameters. If datME is not given, module eigengenes are first calculated using
network analysis based on supplied parameters.

10 automaticNetworkScreening

Value

A list with the following components:

networkScreening
a data frame containing results of the network screening procedure. See networkScreeningGS
for more details.

datME calculated module eigengenes (or a copy of the input datME, if given).
hubGeneSignificance

hub gene significance for all calculated modules. See hubGeneSignificance.

Author(s)

Steve Horvath

See Also

networkScreening, hubGeneSignificance, networkScreening, cutreeDynamic

automaticNetworkScreening
function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

automaticNetworkScreening(datExpr, y, power = 6, networkType = "unsigned", detectCutHeight = 0.995,
minModuleSize = min(20, ncol(as.matrix(datExpr))/2), datME = NULL, getQValues = TRUE, ...)

Arguments

datExpr Describe datExpr here

y Describe y here

power Describe power here

networkType Describe networkType here
detectCutHeight

Describe detectCutHeight here
minModuleSize

Describe minModuleSize here

datME Describe datME here

getQValues Describe datME here

... Describe ... here

Details

If necessary, more details than the description above

0.2. WARNING 11

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.2 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (datExpr, y, power = 6, networkType = "unsigned", detectCutHeight = 0.995,

minModuleSize = min(20, ncol(as.matrix(datExpr))/2), datME = NULL,
...)

{
y = as.numeric(as.character(y))
if (length(y) != dim(as.matrix(datExpr))[[1]])

stop("Number of samples in 'y' and 'datExpr' disagree: length(y) != dim(as.matrix(datExpr))[[1]] ")
nAvailable = apply(as.matrix(!is.na(datExpr)), 2, sum)
ExprVariance = apply(as.matrix(datExpr), 2, var, na.rm = T)
restrictGenes = (nAvailable >= ..minNSamples) & (ExprVariance >

0)
numberUsefulGenes = sum(restrictGenes, na.rm = T)
if (numberUsefulGenes < 3) {

stop(paste("IMPORTANT: there are not enough useful genes. \n",

12 bicor

" Your input genes have fewer than 4 observations or they are constant.\n",
" WGCNA cannot be used for these data. Hint: collect more arrays or input genes that vary."))

}
datExprUsefulGenes = as.matrix(datExpr)[, restrictGenes &

!is.na(restrictGenes)]
if (is.null(datME)) {

mergeCutHeight1 = DynamicMergeCut(n = dim(as.matrix(datExprUsefulGenes))[[1]])
B = blockwiseModules(datExprUsefulGenes, mergeCutHeight = mergeCutHeight1,

TOMLevel = 0, power = power, networkType = networkType,
detectCutHeight = detectCutHeight, minModuleSize = minModuleSize)

datME = data.frame(B$MEs)
}
if (dim(as.matrix(datME))[[1]] != dim(as.matrix(datExpr))[[1]])

stop(paste("Numbers of samples in 'datME' and 'datExpr' are incompatible:",
"dim(as.matrix(datME))[[1]] != dim(as.matrix(datExpr))[[1]]"))

MMdata = signedKME(datExpr = datExpr, datME = datME, outputColumnName = "MM.")
MMdataPvalue = as.matrix(FisherTransformP(as.matrix(MMdata),

n = dim(as.matrix(datExpr))[[1]]))
dimnames(MMdataPvalue)[[2]] = paste("Pvalue", names(MMdata),

sep = ".")
NS1 = networkScreening(y = y, datME = datME, datExpr = datExpr)
ES = data.frame(cor(y, datME, use = "p"))
rr = max(abs(ES), na.rm = T)
AAcriterion = sqrt(length(y) - 2) * rr/sqrt(1 - rr^2)
ESy = (1 + max(abs(ES), na.rm = T))/2
ES = data.frame(ES, ESy = ESy)
ES.999 = as.numeric(as.vector(ES))
ES.999[!is.na(ES) & ES > 0.9999] = 0.9999
ES.pvalue = FisherTransformP(r = abs(ES.999), n = sum(!is.na(y)))
ES.pvalue[length(ES.999)] = 0
EigengeneSignificance.pvalue = data.frame(matrix(ES.pvalue,

nrow = 1))
names(EigengeneSignificance.pvalue) = names(ES)
datME = data.frame(datME, y = y)
names(ES) = paste("ES", substr(names(ES), 3, 100), sep = "")
print(signif(ES, 2))
output = list(networkScreening = data.frame(NS1, MMdata,

MMdataPvalue), datME = data.frame(datME), eigengeneSignificance = data.frame(ES),
eigengeneSignificance.pvalue = EigengeneSignificance.pvalue,
AAcriterion = AAcriterion)

output
}

bicor Biweight Midcorrelation

Description

Calculate biweight midcorrelation efficiently for matrices.

Usage

bicor(x, y = NULL, robustX = TRUE, robustY = TRUE, use = "all.obs", verbose = 0)

blockwiseConsensusModules 13

Arguments

x a vector or matrix-like numeric object

y a vector or matrix-like numeric object

robustX use robust calculation for x?

robustY use robust calculation for y?

use specifies handling of NAs. One of (unique abbreviations of) "all.obs", "pair-
wise.complete.obs".

verbose if non-zero, the underlying C function will print some diagnostics.

Details

This function implements biweight midcorrelation calculation (see references). If y is not supplied,
midcorrelation of columns of x will be calculated; otherwise, the midcorrelation between rows of
x and y will be calculated. Thus, bicor(x) is equivalent to bicor(x,x) but is more efficient.

The options robustX, robustY allow the user to calculation to revert to standard covariance
and correlation calculation. This is important, for example, if any of the variables is binary (or,
more generally, discrete) as in such cases the robust methods produce meaningless results. If both
robustX, robustY are set to FALSE, the function calculates the standard Pearson correlation.

Value

A matrix of biweight midcorrelations. Dimnames on the result are set appropriately.

Author(s)

Peter Langfelder, based on code by Rich Herrington

References

" Dealing with Outliers in Bivariate Data: Robust Correlation", Rich Herrington, http://www.unt.edu/benchmarks/archives/2001/december01/rss.htm

"Introduction to Robust Estimation and Hypothesis Testing", Rand Wilcox, Academic Press, 1997.

"Data Analysis and Regression: A Second Course in Statistics", Mosteller and Tukey, Addison-
Wesley, 1977, pp. 203-209.

blockwiseConsensusModules
Find consensus modules across several datasets.

Description

Perform network construction and consensus module detection across several datasets.

14 blockwiseConsensusModules

Usage

blockwiseConsensusModules(
multiExpr, blocks = NULL,
maxBlockSize = 5000,
randomSeed = 12345,
corType = "pearson",
power = 6,
consensusQuantile = 0,
networkType = "unsigned",
TOMType = "unsigned",
scaleTOMs = TRUE, scaleQuantile = 0.95,
sampleForScaling = TRUE, sampleForScalingFactor = 1000,
useDiskCache = TRUE, chunkSize = NULL,
cacheBase = ".blockConsModsCache",
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
pamStage = TRUE,
minKMEtoJoin =0.7,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.2,
reassignThresholdPS = 1e-4,
mergeCutHeight = 0.15,
impute = TRUE,
getTOMs = NULL,
saveTOMs = FALSE,
saveTOMFileBase = "consensusTOM",
getTOMScalingSamples = FALSE,
trapErrors = FALSE,
checkPower = TRUE,
numericLabels = FALSE,
checkMissingData = TRUE,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the corre-
sponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

blockwiseConsensusModules 15

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and
bidweight midcorrelation, respectively. Missing values are handled using the
pariwise.complete.obs option.

power soft-thresholding power for netwoek construction.
consensusQuantile

qunatile at which consensus is to be defined. See details.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

TOMType one of "none", "unsigned", "signed". If "none", adjacency will be
used for clustering. If "unsigned", the standard TOM will be used (more
generally, TOM function will receive the adjacency as input). If "signed",
TOM will keep track of the sign of correlations between neighbors.

scaleTOMs should set-specific TOM matrices be scaled to the same scale?
scaleQuantile

if scaleTOMs is TRUE, topological overlaps (or adjacencies if TOMs are not
computed) will be scaled such that their scaleQuantile quantiles will agree.

sampleForScaling
if TRUE, scale quantiles will be determined from a sample of network similar-
ities. Note that using all data can double the memory footprint of the function
and the function may fail.

sampleForScalingFactor
determines the number of samples for scaling: the number is 1/scaleQuantile
* sampleForScalingFactor. Should be set well above 1 to ensure accu-
racy of the sampled quantile.

useDiskCache should calculated network similarities in individual sets be temporarilly saved
to disk? Saving to disk is somewhat slower than keeping all data in memory, but
for large blocks and/or many sets the memory footprint may be too big.

chunkSize network similarities are saved in smaller chunks of size chunkSize.

cacheBase character string containing the desired name for the cache files. The actual file
names will consists of cacheBase and a suffix to make the file names unique.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight
dendrogram cut height for module detection. See cutreeDynamic for more
details.

minModuleSize
minimum module size for module detection. See cutreeDynamic for more
details.

checkMinModuleSize
logical: should sanity checks be performed on minModuleSize?

maxCoreScatter
maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more de-
tails.

16 blockwiseConsensusModules

maxAbsCoreScatter
maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for
more details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

minKMEtoJoin a number between 0 and 1. Genes with eigengene connectivity higher than
minKMEtoJoin are automatically assigned to their closest module.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is dis-
banded (its genes are unlabeled and returned to the pool of genes waiting for
mofule detection).

minCoreKMESize
see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThresholdPS
per-set p-value ratio threshold for reassigning genes between modules. See De-
tails.

mergeCutHeight
dendrogram cut height for module merging.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

getTOMs deprecated, please use saveTOMs below.
saveTOMs logical: should the consensus topological overlap matrices for each block be

saved and returned?
saveTOMFileBase

character string containing the file name base for files containing the consensus
topological overlaps. The full file names have "block.1.RData", "block.2.RData"
etc. appended. These files are standard R data files and can be loaded using the
load function.

getTOMScalingSamples
logical: should samples used for TOM scaling be saved for future analysis? This
option is only available when sampleForScaling is TRUE.

trapErrors logical: should errors in calculations be trapped?
checkPower logical: should basic sanity check be performed on the supplied power? If you

would like to experiment with unusual powers, set the argument to FALSE and
proceed with caution.

numericLabels
logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

checkMissingData
logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

blockwiseConsensusModules 17

Details

The function starts by optionally filtering out samples that have too many missing entries and genes
that have either too many missing entries or zero variance in at least one set. Genes that are filtered
out are left unassigned by the module detection. Returned eigengenes will contain NA in entries
corresponding to filtered-out samples.

If blocks is not given and the number of genes exceeds \maxBlockSize, genes are pre-
clustered into blocks using the function consensusProjectiveKMeans; otherwise all genes
are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is cal-
culated in each set. To minimize memory usage, calculated topological overlaps are optionally
saved to disk in chunks until they are needed again for the calculation of the consensus network
topological overlap. If requested, the consensus topological overlaps are saved to disk for later use.
Genes are then clustered using average linkage hierarchical clustering and modules are identified
in the resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes
whose correlation with module eigengene (KME) is less than minKMEtoStay in any of the sets.
Modules in which fewer than minCoreKMESize genes have KME higher than minCoreKME
(in all sets) are disbanded, i.e., their constituent genes are pronounced unassigned. Conversely, any
unassigned genes with KME higher than minKMEtoJoin in all sets are automatically assigned to
their nearest module.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS (in every set),
the gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

Value

A list with the following components:

colors module assignment of all input genes. A vector containing either character
strings with module colors (if input numericLabels was unset) or numeric
module labels (if numericLabels was set to TRUE). The color "grey" and
the numeric label 0 are reserved for unassigned genes.

unmergedColors
module colors or numeric labels before the module merging step.

multiMEs module eigengenes corresponding to the modules returned in colors, in multi-
set format. A vector of lists, one per set, containing eigengenes, proportion of
variance explained and other information. See multiSetMEs for a detailed
description.

goodSamples a list, with one component per input set. Each component is a logical vector with
one entry per sample from the corresponding set. The entry indicates whether
the sample in the set passed basic quality control criteria.

goodGenes a logical vector with one entry per input gene indicating whether the gene passed
basic quality control criteria in all sets.

dendrograms a list with one component for each block of genes. Each component is the
hierarchical clustering dendrogram obtained by clustering the consensus gene
dissimilarity in the corresponding block.

18 blockwiseConsensusModules

TOMFiles if saveTOMs==TRUE, a vector of character strings, one string per block, giving
the file names of files (relative to current directory) in which blockwise topolog-
ical overlaps were saved.

blockGenes a list with one component for each block of genes. Each component is a vector
giving the indices (relative to the input multiExpr) of genes in the corre-
sponding block.

blocks if input blocks was given, its copy; otherwise a vector of length equal number
of genes giving the block label for each gene. Note that block labels are not
necessarilly sorted in the order in which the blocks were processed (since we do
not require this for the input blocks). See blockOrder below.

blockOrder a vector giving the order in which blocks were processed and in which blockGenes
above is returned. For example, blockOrder[1] contains the label of the
first-processed block.

originCount if the input consensusQuantile==0, this vector will contain counts of how
many times each set contributed the consensus gene similarity value. If the
counts are highly unbalanced, the consensus may be biased.

TOMScalingSamples
if the input getTOMScalingSamples is TRUE, this component is a list with
one component per block. Each component is again a list with two components:
sampleIndex contains indices of the distance structure in which TOM is
stored that were sampled, and TOMSamples is a matrix whose rows correspond
to TOM samples and columns to individual set. Hence, TOMScalingSamples[[blockNo]]$TOMSamples[index,
setNo] contains the TOM entry that corresponds to element TOMScalingSamples[[blockNo]]$sampleIndex[index]
of the TOM distance structure in block blockNo and set setNo. (For details
on the distance structure, see dist.)

Note

If the input datasets have large numbers of genes, consider carefully the maxBlockSize as it sig-
nificantly affects the memory footprint (and whether the function will fail with a memory allocation
error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the
other hand, using smaller blocks is substantially faster and often the only way to work with large
numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB memory
or less will be able to work with blocks larger than 7000 genes.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

goodSamplesGenesMS for basic quality control and filtering;

adjacency, TOMsimilarity for network construction;

hclust for hierarchical clustering;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

blockwiseModules 19

blockwiseModules Automatic network construction and module detection

Description

This function performs automatic network construction and module detection on large expression
datasets in a block-wise manner.

Usage

blockwiseModules(
datExpr,
blocks = NULL,
maxBlockSize = 5000,
randomSeed = 12345,
corType = "pearson",
power = 6,
networkType = "unsigned",
TOMType = "signed",
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = min(20, ncol(datExpr)/2),
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
pamStage = TRUE,
minKMEtoJoin =0.7,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.3,
reassignThreshold = 1e-6,
mergeCutHeight = 0.15, impute = TRUE,
getTOMs = NULL,
saveTOMs = FALSE,
saveTOMFileBase = "blockwiseTOM",
trapErrors = FALSE, numericLabels = FALSE,
checkMissingData = TRUE,
verbose = 0, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per column (gene) of exprData giving the number of the block to which the
corresponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

20 blockwiseModules

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and
bidweight midcorrelation, respectively. Missing values are handled using the
pairwise.complete.obs option.

power soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

TOMType one of "none", "unsigned", "signed". If "none", adjacency will be
used for clustering. If "unsigned", the standard TOM will be used (more
generally, TOM function will receive the adjacency as input). If "signed",
TOM will keep track of the sign of correlations between neighbors.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight
dendrogram cut height for module detection. See cutreeDynamic for more
details.

minModuleSize
minimum module size for module detection. See cutreeDynamic for more
details.

maxCoreScatter
maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more de-
tails.

maxAbsCoreScatter
maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for
more details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

minKMEtoJoin a number between 0 and 1. Genes with eigengene connectivity higher than
minKMEtoJoin are automatically assigned to their closest module.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is dis-
banded (its genes are unlabeled and returned to the pool of genes waiting for
mofule detection).

minCoreKMESize
see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThreshold
p-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight
dendrogram cut height for module merging.

blockwiseModules 21

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

getTOMs deprecated, please use saveTOMs below.

saveTOMs logical: should the consensus topological overlap matrices for each block be
saved and returned?

saveTOMFileBase
character string containing the file name base for files containing the consensus
topological overlaps. The full file names have "block.1.RData", "block.2.RData"
etc. appended. These files are standard R data files and can be loaded using the
load function.

trapErrors logical: should errors in calculations be trapped?
numericLabels

logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

checkMissingData
logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Before module detection starts, genes and samples are optionally checked for the presence of NAs.
Genes and/or samples that have too many NAs are flagged as bad and removed from the analysis;
bad genes will be automatically labeled as unassigned, while the returned eigengenes will have NA
entries for all bad samples.

If blocks is not given and the number of genes exceeds \maxBlockSize, genes are pre-
clustered into blocks using the function projectiveKMeans; otherwise all genes are treated
in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is cal-
culated. If requested, the topological overlaps are returned as part of the return value list. Genes
are then clustered using average linkage hierarchical clustering and modules are identified in the
resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes whose
correlation with module eigengene (KME) is less than minKMEtoStay. Modules in which fewer
than minCoreKMESize genes have KME higher than minCoreKME are disbanded, i.e., their
constituent genes are pronounced unassigned. Conversely, any unassigned genes with KME higher
than minKMEtoJoin are automatically assigned to their nearest module.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS, the gene is
re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

22 blockwiseModules

Value

A list with the following components:

colors a vector of color or numeric module labels for all genes.

unmergedColors
a vector of color or numeric module labels for all genes before module merging.

MEs a data frame containing module eigengenes of the found modules (given by
colors).

goodSamples numeric vector giving indices of good samples, that is samples that do not have
too many missing entries.

goodGenes numeric vector giving indices of good genes, that is genes that do not have too
many missing entries.

dendrograms a list whose components conatain hierarchical clustering dendrograms of genes
in each block.

TOMFiles if saveTOMs==TRUE, a vector of character strings, one string per block, giving
the file names of files (relative to current directory) in which blockwise topolog-
ical overlaps were saved.

blockGenes a list whose components give the indices of genes in each block.

blocks if input blocks was given, its copy; otherwise a vector of length equal number
of genes giving the block label for each gene. Note that block labels are not
necessarilly sorted in the order in which the blocks were processed (since we do
not require this for the input blocks). See blockOrder below.

blockOrder a vector giving the order in which blocks were processed and in which blockGenes
above is returned. For example, blockOrder[1] contains the label of the
first-processed block.

MEsOK logical indicating whether the module eigengenes were calculated without er-
rors.

Note

If the input dataset has a large number of genes, consider carefully the maxBlockSize as it sig-
nificantly affects the memory footprint (and whether the function will fail with a memory allocation
error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the
other hand, using smaller blocks is substantially faster and often the only way to work with large
numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB memory
or less will be able to work with blocks larger than 8000 genes.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

checkAdjMat 23

See Also

goodSamplesGenes for basic quality control and filtering;

adjacency, TOMsimilarity for network construction;

hclust for hierarchical clustering;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

checkAdjMat Check adjacency matrix

Description

Checks a given matrix for properties that an adjacency matrix must satisfy.

Usage

checkAdjMat(adjMat, min = 0, max = 1)

Arguments

adjMat matrix to be checked

min minimum allowed value for entries of adjMat

max maximum allowed value for entries of adjMat

Details

The function checks whether the given matrix really is a 2-dimensional numeric matrix, whether it
is square, symmetric, and all finite entries are between min and max. If any of the conditions is not
met, the function issues an error.

Value

None. The function returns normally if all conditions are met.

Author(s)

Peter Langfelder

See Also

adjacency

24 checkSets

checkSets Check structure and retrieve sizes of a group of datasets.

Description

Checks whether given sets have the correct format and retrieves dimensions.

Usage

checkSets(data, checkStructure = FALSE, useSets = NULL)

Arguments

data A vector of lists; in each list there must be a component named data whose
content is a matrix or dataframe or array of dimension 2.

checkStructure
If FALSE, incorrect structure of data will trigger an error. If TRUE, an appro-
priate flag (see output) will be set to indicate whether data has correct structure.

useSets Optional specification of entries of the vector data that are to be checked. De-
faults to all components. This may be useful when data only contains infor-
mation for some of the sets.

Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc)
are presented by a common structure, a vector of lists (one list for each set) where each list has a
component data that contains the actual (expression, trait, eigengene) data for the corresponding
set in the form of a dataframe. This funtion checks whether data conforms to this convention and
retrieves some basic dimension information (see output).

Value

A list with components

nSets Number of sets (length of the vector data).

nGenes Number of columns in the data components in the lists. This number must be
the same for all sets.

nSamples A vector of length nSets giving the number of rows in the data components.

structureOK Only set if the argument checkStructure equals TRUE. The value is TRUE
if the paramter data passes a few tests of its structure, and FALSE otherwise.
The tests are not exhaustive and are meant to catch obvious user errors rather
than be bulletproof.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

clusterCoef 25

clusterCoef Clustering coefficient calculation

Description

This function calculates the clustering coefficients for all nodes in the network given by the input
adjacency matrix.

Usage

clusterCoef(adjMat)

Arguments

adjMat adjacency matrix

Value

A vector of clustering coefficients for each node.

Author(s)

Steve Horvath

collectGarbage Iterative garbage collection.

Description

Performs garbage collection until free memory idicators show no change.

Usage

collectGarbage()

Value

None.

Author(s)

Steve Horvath

26 consensusMEDissimilarity

colQuantileC Fast colunm-wise quantile of a matrix.

Description

Fast calculation of column-wise quantiles of a matrix at a single probability. Implemented via
compiled code, it is much faster than the equivalent apply(data, 2, quantile, prob =
p).

Usage

colQuantileC(data, p)

Arguments

data a numerical matrix column-wise quantiles are desired. Missing values are cor-
rently not allowed.

p a single probability at which the quantile is to be calculated.

Value

A vector of length equal the number of columns in data containing the column-wise quantiles.

Author(s)

Peter Langfelder

See Also

quantile

consensusMEDissimilarity
Consensus dissimilarity of module eigengenes.

Description

Calculates consensus dissimilarity (1-cor) of given module eigengenes relaized in several sets.

Usage

consensusMEDissimilarity(MEs, useAbs = FALSE, useSets = NULL, method = "consensus")

consensusOrderMEs 27

Arguments

MEs Module eigengenes of the same modules in several sets.

useAbs Controls whether absolute value of correlation should be used instead of corre-
lation in the calculation of dissimilarity.

useSets If the consensus is to include only a selection of the given sets, this vector (or
scalar in the case of a single set) can be used to specify the selection. If NULL,
all sets will be used.

method A character string giving the method to use. Allowed values are (abbreviations
of) "consensus" and "majority". The consensus dissimilarity is calcu-
lated as the minimum of given set dissimilarities for "consensus" and as the
average for "majority".

Details

This function calculates the individual set dissimilarities of the given eigengenes in each set, then
takes the (parallel) maximum or average over all sets. For details on the structure of imput data, see
checkSets.

Value

A dataframe containing the matrix of dissimilarities, with names and \rownames set appropri-
ately.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

checkSets

consensusOrderMEs Put close eigenvectors next to each other in several sets.

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each
other. This is a multi-set version of orderMEs; the dissimilarity used can be of consensus type (for
each pair of eigenvectors the consensus dissimilarity is the maximum of individual set dissimilarities
over all sets) or of majority type (for each pair of eigenvectors the consensus dissimilarity is the
average of individual set dissimilarities over all sets).

Usage

consensusOrderMEs(MEs, useAbs = FALSE, useSets = NULL,
greyLast = TRUE,
greyName = paste(moduleColor.getMEprefix(), "grey", sep=""),
method = "consensus")

28 consensusProjectiveKMeans

Arguments

MEs Module eigengenes of several sets in a multi-set format (see checkSets).
A vector of lists, with each list corresponding to one dataset and the module
eigengenes in the component data, that is MEs[[set]]$data[sample,
module] is the expression of the eigengene of module module in sample
sample in dataset set. The number of samples can be different between the
sets, but the modules must be the same.

useAbs Controls whether vector similarity should be given by absolute value of correla-
tion or plain correlation.

useSets Allows the user to specify for which sets the eigengene ordering is to be per-
formed.

greyLast Normally the color grey is reserved for unassigned genes; hence the grey module
is not a proper module and it is conventional to put it last. If this is not desired,
set the parameter to FALSE.

greyName Name of the grey module eigengene.

method A character string giving the method to be used calculating the consensus dis-
similarity. Allowed values are (abbreviations of) "consensus" and "majority".
The consensus dissimilarity is calculated as the maximum of given set dissimi-
larities for "consensus" and as the average for "majority".

Details

Ordering module eigengenes is useful for plotting purposes. This function calculates the consensus
or majority dissimilarity of given eigengenes over the sets specified by useSets (defaults to all
sets). A hierarchical dendrogram is calculated using the dissimilarity and the order given by the
dendrogram is used for the eigengenes in all other sets.

Value

A vector of lists of the same type as MEs containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

moduleEigengenes, multiSetMEs, orderMEs

consensusProjectiveKMeans
Consensus projective K-means (pre-)clustering of expression data

Description

Implementation of a consensus variant of K-means clustering for expression data across multiple
data sets.

consensusProjectiveKMeans 29

Usage

consensusProjectiveKMeans(
multiExpr,
preferredSize = 5000,
nCenters = NULL,
sizePenaltyPower = 4,
networkType = "unsigned",
randomSeed = 54321,
checkData = TRUE,
useMean = (length(multiExpr) > 3),
maxIterations = 1000,
verbose = 0, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

preferredSize
preferred maximum size of clusters.

nCenters number of initial clusters.
sizePenaltyPower

parameter specifying how severe is the penalty for clusters that exceed preferredSize.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

checkData logical: should data be checked for genes with zero variance and genes and
samples with excessive numbers of missing samples? Bad samples are ignored;
returned cluster assignment for bad genes will be NA.

useMean logical: should mean distance across sets be used instead of maximum? See
details.

maxIterations
maximum iterations to be attempted.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into
smaller blocks that can be handled using standard WGCNA techniques.

This function implements a variant of K-means clustering that is suitable for co-expression anal-
ysis. Cluster centers are defined by the first principal component, and distances by correlation.
Consensus distance across several sets is defined as the maximum of the corresponding distances
in individual sets; however, if useMean is set, the mean distance will be used instead of the
maximum. The distance between a gene and a center of a cluster is multiplied by a factor of
max(clusterSize/preferredSize, 1)sizePenaltyPower, thus penalizing clusters whose size ex-
ceeds preferredSize. The function starts with randomly generated cluster assignment (hence

30 corPredictionSuccess

the need to set the random seed for repeatability) and executes interations of calculating new cen-
ters and reassigning genes to nearest (in the consensus sense) center until the clustering becomes
stable. Before returning, nearby clusters are iteratively combined if their combined size is below
preferredSize.

Consensus distance defined as maximum of distances in all sets is consistent with the approach
taken in blockwiseConsensusModules, but the procedure may not converge. Hence it is
advisable to use the mean as consensus in cases where there are multiple data sets (4 or more, say)
and/or if the input data sets are very different.

The standard principal component calculation via the function svd fails from time to time (likely a
convergence problem of the underlying lapack functions). Such errors are trapped and the principal
component is approximated by a weighted average of expression profiles in the cluster. If verbose
is set above 2, an informational message is printed whenever this approximation is used.

Value

A list with the following components:

clusters a numerical vector with one component per input gene, giving the cluster num-
ber in which the gene is assigned.

centers a vector of lists, one list per set. Each list contains a component data that
contains a matrix whose columns are the cluster centers in the corresponding
set.

unmergedClusters
a numerical vector with one component per input gene, giving the cluster num-
ber in which the gene was assigned before the final merging step.

unmergedCenters
a vector of lists, one list per set. Each list contains a component data that
contains a matrix whose columns are the cluster centers before merging in the
corresponding set.

Author(s)

Peter Langfelder

See Also

projectiveKMeans

corPredictionSuccess
function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

corPredictionSuccess(corPrediction, corTestSet, topNumber = 100)

0.3. WARNING 31

Arguments

corPrediction
Describe corPrediction here

corTestSet Describe corTestSet here

topNumber Describe topNumber here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.3 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

32 corPvalueFisher

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (corPrediction, corTestSet, topNumber = 100)
{

nPredictors = dim(as.matrix(corPrediction))[[2]]
nGenes = dim(as.matrix(corPrediction))[[1]]
if (length(as.numeric(corTestSet)) != nGenes)

stop("non-compatible dimensions of 'corPrediction' and 'corTestSet'")
out1 = rep(NA, nPredictors)
meancorTestSetPositive = matrix(NA, ncol = nPredictors, nrow = length(topNumber))
meancorTestSetNegative = matrix(NA, ncol = nPredictors, nrow = length(topNumber))
for (i in c(1:nPredictors)) {

rankpositive = rank(-as.matrix(corPrediction)[, i], ties.method = "first")
ranknegative = rank(as.matrix(corPrediction)[, i], ties.method = "first")
for (j in c(1:length(topNumber))) {

meancorTestSetPositive[j, i] = mean(corTestSet[rankpositive <=
topNumber[j]], na.rm = T)

meancorTestSetNegative[j, i] = mean(corTestSet[ranknegative <=
topNumber[j]], na.rm = T)

}
}
meancorTestSetOverall = data.frame((meancorTestSetPositive -

meancorTestSetNegative)/2)
dimnames(meancorTestSetOverall)[[2]] = names(data.frame(corPrediction))
meancorTestSetOverall = data.frame(topNumber = topNumber,

meancorTestSetOverall)
meancorTestSetPositive = data.frame(meancorTestSetPositive)
dimnames(meancorTestSetPositive)[[2]] = names(data.frame(corPrediction))
meancorTestSetPositive = data.frame(topNumber = topNumber,

meancorTestSetPositive)
meancorTestSetNegative = data.frame(meancorTestSetNegative)
dimnames(meancorTestSetNegative)[[2]] = names(data.frame(corPrediction))
meancorTestSetNegative = data.frame(topNumber = topNumber,

meancorTestSetNegative)
datout = list(meancorTestSetOverall = meancorTestSetOverall,

meancorTestSetPositive = meancorTestSetPositive, meancorTestSetNegative = meancorTestSetNegative)
datout

}

corPvalueFisher Fisher’s asymptotic p-value for correlation

Description

Calculates Fisher’s asymptotic p-value for given correlations.

Usage

corPvalueFisher(cor, nSamples, twoSided = TRUE)

corPvalueStudent 33

Arguments

cor A vector of correlation values whose corresponding p-values are to be calculated

nSamples Number of samples from which the correlations were calculated

twoSided logical: should the calculated p-values be two sided?

Value

A vector of p-values of the same length as the input correlations.

Author(s)

Steve Horvath and Peter Langfelder

corPvalueStudent Student asymptotic p-value for correlation

Description

Calculates Student asymptotic p-value for given correlations.

Usage

corPvalueStudent(cor, nSamples)

Arguments

cor A vector of correlation values whose corresponding p-values are to be calculated

nSamples Number of samples from which the correlations were calculated

Value

A vector of p-values of the same length as the input correlations.

Author(s)

Steve Horvath and Peter Langfelder

34 correlationPreservation

correlationPreservation
Preservation of eigengene correlations

Description

Calculates a summary measure of preservation of eigengene correlations across data sets

Usage

correlationPreservation(multiME, setLabels, excludeGrey = TRUE, greyLabel = "grey")

Arguments

multiME consensus module eigengenes in a multi-set format. A vector of lists with one
list corresponding to each set. Each list must contain a component data that is
a data frame whose columns are consensus module eigengenes.

setLabels names to be used for the sets represented in multiME.

excludeGrey logical: exclude the ’grey’ eigengene from preservation measure?

greyLabel module label corresponding to the ’grey’ module. Usually this will be the char-
acter string "grey" if the labels are colors, and the number 0 if the labels are
numeric.

Details

The function calculates the preservation of correlation of each eigengene with all other eigengenes
(optionally except the ’grey’ eigengene) in all pairs of sets.

Value

A data frame whose rows correspond to consensus module eigengenes given in the input multiME,
and columns correspond to all possible set comparisons. The two sets compared in each column are
indicated in the column name.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

multiSetMEs and modulecheckSets in package moduleColor for more on eigengenes and the
multi-set format

cutreeStaticColor 35

cutreeStaticColor Constant height tree cut using color labels

Description

Cluster detection by a constant height cut of a hierarchical clustering dendrogram.

Usage

cutreeStaticColor(dendro, cutHeight = 0.9, minSize = 50)

Arguments

dendro a hierarchical clustering dendrogram such as returned by hclust.

cutHeight height at which branches are to be cut.

minSize minimum number of object on a branch to be considered a cluster.

Details

This function performs a straightforward constant-height cut as implemented by cutree, then cal-
culates the number of objects on each branch and only keeps branches that have at least minSize
objects on them.

Value

A character vector giving color labels of objects, with "grey" meaning unassigned. The largest
cluster is conventionally labeled "turquoise", next "blue" etc. Run standardColors() to see
the sequence of standard color labels.

Author(s)

Peter Langfelder

See Also

hclust for hierarchical clustering, cutree and cutreeStatic for other constant-height branch
cuts, standardColors to see the sequence of color labels that can be assigned.

cutreeStatic Constant-height tree cut

Description

Module detection in hierarchical dendrograms using a constant-height tree cut. Only branches
whose size is at least minSize are retained.

Usage

cutreeStatic(dendro, cutHeight = 0.9, minSize = 50)

36 displayColors

Arguments

dendro a hierarchical clustering dendrogram such as returned by hclust.

cutHeight height at which branches are to be cut.

minSize minimum number of object on a branch to be considered a cluster.

Details

This function performs a straightforward constant-height cut as implemented by cutree, then cal-
culates the number of objects on each branch and only keeps branches that have at least minSize
objects on them.

Value

A numeric vector giving labels of objects, with 0 meaning unassigned. The largest cluster is con-
ventionally labeled 1, the next largest 2, etc.

Author(s)

Peter Langfelder

See Also

hclust for hierarchical clustering, cutree and cutreeStatic for other constant-height branch
cuts, standardColors to convert the retuned numerical lables into colors for easier visualiza-
tion.

displayColors Show colors used to label modules

Description

The function plots a barplot using colors that label modules.

Usage

displayColors(colors = NULL)

Arguments

colors colors to be displayed. Defaults to all colors available for module labeling.

Details

To see the first n colors, use argument colors = standardColors(n).

Value

None.

Author(s)

Peter Langfelder

dynamicMergeCut 37

See Also

standardColors

Examples

displayColors(standardColors(10))

dynamicMergeCut Threshold for module merging

Description

Calculate a suitable threshold for module merging based on the number of samples and a desired Z
quantile.

Usage

dynamicMergeCut(n, mergeCor = 0.9, Zquantile = 2.35)

Arguments

n number of samples

mergeCor theoretical correlation threshold for module merging

Zquantile Z quantile for module merging

Details

This function calculates the threshold for module merging. The threshold is calculated as the lower
boundary of the interval around the theoretical correlation \mergeCor whose width is given by
the Z value Zquantile.

Value

The correlation threshold for module merging; a single number.

Author(s)

Steve Horvath

See Also

moduleEigengenes, mergeCloseModules

Examples

dynamicMergeCut(20)
dynamicMergeCut(50)
dynamicMergeCut(100)

38 exportNetworkToCytoscape

exportNetworkToCytoscape
Export network to Cytoscape

Description

This function exports a network in edge and node list files in a format suitable for importing to
Cytoscape.

Usage

exportNetworkToCytoscape(adjMat, edgeFile = NULL, nodeFile = NULL, weighted = TRUE, threshold = 0.5,
nodeNames = NULL, altNodeNames = NULL, nodeAttr = NULL, includeColNames = TRUE)

Arguments

adjMat adjacency matrix giving connection strengths among the nodes in the network.

edgeFile file name of the file to contain the edge information.

nodeFile file name of the file to contain the node information.

weighted logical: should the exported network be weighted?

threshold adjacency threshold for including edges in the output.

nodeNames names of the nodes. If not given, dimnames of adjMat will be used.

altNodeNames optional alternate names for the nodes, for example gene names if nodes are
labeled by probe IDs.

nodeAttr optional node attribute, for example module color. Can be a vector or a data
frame.

includeColNames
logical: should column names be included in the output files? Note that Cy-
toscape can read files both with and without column names.

Details

If the corresponding file names are supplied, the edge and node data is written to the appropriate
files. The edge and node data is also returned as return value (see below).

Value

A list with the following componens:

egdeData a data frame containing the edge data, with one row per edge

nodeData a data frame containing the node data, with one row per node

Author(s)

Peter Langfelder

See Also

exportNetworkToVisANT

exportNetworkToVisANT 39

exportNetworkToVisANT
Export network data in format readable by VisANT

Description

Exports network data in a format readable and displayable by the VisANT software.

Usage

exportNetworkToVisANT(
adjMat,
file = NULL,
weighted = TRUE,
threshold = 0.5,
probeToGene = NULL)

Arguments

adjMat adjacency matrix of the network to be exported.

file character string specifying the file name of the file in which the data should be
written. If not given, no file will be created. The file is in a plain text format.

weighted logical: should the exported network by weighted?

threshold adjacency threshold for including edges in the output.

probeToGene optional specification of a conversion between probe names (that label columns
and rows of adjacency) and gene names (that should label nodes in the out-
put).

Details

The adjacency matrix is checked for validity. The entries can be negative, however. The adjacency
matrix is expected to also have valid names or dimnames[[2]] that represent the probe names
of the corresponding edges.

Whether the output is a weighted network or not, only edges whose (absolute value of) adjacency
are above threshold will be included in the output.

If probeToGene is given, it is expected to have two columns, the first one corresponding to the
probe names, the second to their corresponding gene names that will be used in the output.

Value

A data frame containing the network information suitable as input to VisANT. The same data frame
is also written into a file specified by file, if given.

Author(s)

Peter Langfelder

References

VisANT software is available from http://visant.bu.edu/.

40 fixDataStructure

fixDataStructure Put single-set data into a form useful for multiset calculations.

Description

Encapsulates single-set data in a wrapper that makes the data suitable for functions working on
multiset data collections.

Usage

fixDataStructure(data, verbose = 0, indent = 0)

Arguments

data A dataframe, matrix or array with two dimensions to be encapsulated.

verbose Controls verbosity. 0 is silent.

indent Controls indentation of printed progress messages. 0 means no indentation,
every unit adds two spaces.

Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc)
are presented by a common structure, a vector of lists (one list for each set) where each list has
a component data that contains the actual (expression, trait, eigengene) data for the correspond-
ing set in the form of a dataframe. This funtion creates a vector of lists of length 1 and fills the
component data with the content of parameter data.

Value

As described above, input data in a format suitable for functions operating on multiset data collec-
tions.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

checkSets

Examples

singleSetData = matrix(rnorm(100), 10,10);
encapsData = fixDataStructure(singleSetData);
length(encapsData)
names(encapsData[[1]])
dim(encapsData[[1]]$data)
all.equal(encapsData[[1]]$data, singleSetData);

goodGenesMS 41

goodGenesMS Filter genes with too many missing entries across multiple sets

Description

This function checks data for missing entries and returns a list of genes that have non-zero variance
in all sets and pass two criteria on maximum number of missing values in each given set: the fraction
of missing values must be below a given threshold and the total number of missing samples must
be below a given threshold

Usage

goodGenesMS(multiExpr,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 1, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to
using all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.

minNGenes minimum number of good genes for the data set to be considered fit for analysis.
If the actual number of good genes falls below this threshold, an error will be
issued.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4. For most data sets,
the fraction of missing samples criterion will be much more stringent than the absolute number of
missing samples criterion.

42 goodGenes

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE
otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodSamplesMS, goodSamplesGenesMS for additional cleaning of multiple data sets to-
gether.

goodGenes Filter genes with too many missing entries

Description

This function checks data for missing entries and returns a list of genes that have non-zero variance
and pass two criteria on maximum number of missing values: the fraction of missing values must be
below a given threshold and the total number of missing samples must be below a given threshold.

Usage

goodGenes(datExpr,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
useSamples optional specifications of which samples to use for the check. Should be a log-

ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to
using all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.
minNSamples minimum number of non-missing samples for a gene to be considered good.
minNGenes minimum number of good genes for the data set to be considered fit for analysis.

If the actual number of good genes falls below this threshold, an error will be
issued.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

goodSamplesGenesMS 43

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4. For most data sets,
the fraction of missing samples criterion will be much more stringent than the absolute number of
missing samples criterion.

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE
otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodSamples, goodSamplesGenes

goodSamplesGenesMS Iterative filtering of samples and genes with too many missing entries
across multiple data sets

Description

This function checks data for missing entries and zero variance across multiple data sets and returns
a list of samples and genes that pass criteria maximum number of missing values. If necessary, the
filtering is iterated.

Usage

goodSamplesGenesMS(
multiExpr,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.
minNSamples minimum number of non-missing samples for a gene to be considered good.
minNGenes minimum number of good genes for the data set to be considered fit for analysis.

If the actual number of good genes falls below this threshold, an error will be
issued.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

44 goodSamplesGenes

Details

This function iteratively identifies samples and genes with too many missing entries, and genes with
zero variance. Iterations may be required since excluding samples effectively changes criteria on
genes and vice versa. The process is repeated until the lists of good samples and genes are stable.
The constants ..minNSamples and ..minNGenes are both set to the value 4.

Value

A list with the foolowing components:

goodSamples A list with one component per given set. Each component is a logical vector
with one entry per sample in the corresponding set that is TRUE if the sample is
considered good and FALSE otherwise.

goodGenes A logical vector with one entry per gene that is TRUE if the gene is considered
good and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodSamplesMS, goodGenesMS for additional cleaning of multiple data sets together.

goodSamplesGenes Iterative filtering of samples and genes with too many missing entries

Description

This function checks data for missing entries and zero-variance genes, and returns a list of sam-
ples and genes that pass criteria maximum number of missing values. If necessary, the filtering is
iterated.

Usage

goodSamplesGenes(
datExpr,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.

minNGenes minimum number of good genes for the data set to be considered fit for analysis.
If the actual number of good genes falls below this threshold, an error will be
issued.

goodSamplesMS 45

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function iteratively identifies samples and genes with too many missing entries and genes with
zero variance. Iterations may be required since excluding samples effectively changes criteria on
genes and vice versa. The process is repeated until the lists of good samples and genes are stable.
The constants ..minNSamples and ..minNGenes are both set to the value 4.

Value

A list with the foolowing components:

goodSamples A logical vector with one entry per sample that is TRUE if the sample is consid-
ered good and FALSE otherwise.

goodGenes A logical vector with one entry per gene that is TRUE if the gene is considered
good and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

goodSamples, goodGenes

goodSamplesMS Filter samples with too many missing entries across multiple data sets

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on
maximum number of missing values: the fraction of missing values must be below a given threshold
and the total number of missing genes must be below a given threshold.

Usage

goodSamplesMS(multiExpr,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 1, indent = 0)

46 goodSamples

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to
using all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of good samples for the data set to be considered fit for anal-
ysis. If the actual number of good samples falls below this threshold, an error
will be issued.

minNGenes minimum number of non-missing samples for a sample to be considered good.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4. For most data sets,
the fraction of missing samples criterion will be much more stringent than the absolute number of
missing samples criterion.

Value

A list with one component per input set. Each component is a logical vector with one entry per
sample in the corresponding set, indicating whether the sample passed the missing value criteria.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodGenesMS, goodSamplesGenesMS for additional cleaning of multiple data sets together.

goodSamples Filter samples with too many missing entries

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on
maximum number of missing values: the fraction of missing values must be below a given threshold
and the total number of missing genes must be below a given threshold.

goodSamples 47

Usage

goodSamples(datExpr,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to
using all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of good samples for the data set to be considered fit for anal-
ysis. If the actual number of good samples falls below this threshold, an error
will be issued.

minNGenes minimum number of non-missing samples for a sample to be considered good.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4. For most data sets,
the fraction of missing samples criterion will be much more stringent than the absolute number of
missing samples criterion.

Value

A logical vector with one entry per sample that is TRUE if the sample is considered good and FALSE
otherwise. Note that all samples excluded by useSamples are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodSamples, goodSamplesGenes

48 greenWhiteRed

greenBlackRed Green-black-red color sequence

Description

Generate a green-black-red color sequence of a given length.

Usage

greenBlackRed(n, gamma = 1)

Arguments

n number of colors to be returned

gamma color correction power

Details

The function returns a color vector that starts with pure green, gradually turns into black and then
to red. The power \gamma can be used to control the behaviour of the quarter- and three quarter-
values (between green and black, and black and red, respectively). Higher powers will make the
mid-colors more green and red, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

Examples

par(mfrow = c(3, 1))
displayColors(greenBlackRed(50));
displayColors(greenBlackRed(50, 2));
displayColors(greenBlackRed(50, 0.5));

greenWhiteRed Green-white-red color sequence

Description

Generate a green-white-red color sequence of a given length.

Usage

greenWhiteRed(n, gamma = 1)

GTOMdist 49

Arguments

n number of colors to be returned

gamma color correction power

Details

The function returns a color vector that starts with pure green, gradually turns into white and then
to red. The power \gamma can be used to control the behaviour of the quarter- and three quarter-
values (between green and white, and white and red, respectively). Higher powers will make the
mid-colors more white, while lower powers will make the colors more saturated, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

Examples

par(mfrow = c(3, 1))
displayColors(greenWhiteRed(50));
displayColors(greenWhiteRed(50, 3));
displayColors(greenWhiteRed(50, 0.5));

GTOMdist Generalized Topological Overlap Measure

Description

Generalized Topological Overlap Measure, taking into account interactions of higher degree.

Usage

GTOMdist(adjMat, degree = 1)

Arguments

adjMat adjacency matrix. See details below.

degree integer specifying the maximum degree to be calculated.

Value

Matrix of the same dimension as the input adjMat.

Author(s)

Steve Horvath and Andy Yip

50 hubGeneSignificance

References

Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap
measure. BMC Bioinformatics 2007, 8:22

hubGeneSignificance
Hubgene significance

Description

Calculate approximate hub gene significance for all modules in network.

Usage

hubGeneSignificance(datKME, GS)

Arguments

datKME a data frame (or a matrix-like object) containing eigengene-based connectivities
of all genes in the network.

GS a vector with one entry for every gene containing its gene significance.

Details

In datKME rows correspond to genes and columns to modules.

Value

A vector whose entries are the hub gene significances for each module.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Inline display of progress 51

Inline display of progress
Inline display of progress

Description

These functions provide an inline display of pregress.

Usage

initProgInd(leadStr = "..", trailStr = "", quiet = !interactive())
updateProgInd(newFrac, progInd, quiet = !interactive())

Arguments

leadStr character string that will be printed before the actual progress number.

trailStr character string that will be printed after the actual progress number.

quiet can be used to silence the indicator for non-interactive sessions whose output is
typically redirected to a file.

newFrac new fraction of progress to be displayed.

progInd an object of class progressIndicator that encodes previously printed mes-
sage.

Details

A progress indicator is a simple inline display of progress intended to satisfy impatient users dur-
ing lengthy operations. The function initProgInd initializes a progress indicator (at zero);
updateProgInd updates it to a specified fraction.

Value

Both functions return an object of class progressIndicator that holds information on the last
printed value and should be used for subsequent updates of the indicator. Note that excessive use of
updateProgInd may lead to a performance penalty if a substantial amount of CPU time has to
be invested into console output. See examples.

Author(s)

Peter Langfelder

Examples

if (TRUE)
{
max = 20;
prog = initProgInd("Counting: ", "done");
for (c in 1:max)
{
Sys.sleep(0.3);
prog = updateProgInd(c/max, prog);

}

52 intramodularConnectivity

printFlush("");
}

if (TRUE)
{

max = 20;
printFlush("Example 2:");
prog = initProgInd();
for (c in 1:max)
{
Sys.sleep(0.3);
prog = updateProgInd(c/max, prog);

}
printFlush("");

}

Example of a significant slowdown:

Without progress indicator:

system.time({a = 0; for (i in 1:100000) a = a+i; })

With progress indicator, some 100 times slower:

system.time(
{

prog = initProgInd("Counting: ", "done");
a = 0;
for (i in 1:100000)
{
a = a+i;
prog = updateProgInd(i/100000, prog);

}
}
)

intramodularConnectivity
Calculation of intramodular connectivity

Description

Calculates intramodular connectivity, i.e., connectivity of nodes to other nodes within the same
module.

Usage

intramodularConnectivity(adjMat, colors, scaleByMax = FALSE)

Arguments

adjMat adjacency matrix, a square, symmetric matrix with entries between 0 and 1.

colors module labels. A vector of length ncol(adjMat) giving a module label for
each gene (node) of the network.

keepCommonProbes 53

scaleByMax logical: should intramodular connectivities be scaled by the maximum IM con-
nectivity in each module?

Details

The module labels can be numeric or character. For each node (gene), the function sums adjacency
entries (excluding the diagonal) to other nodes within the same module. Optionally, the connectivi-
ties can be scaled by the maximum connectivy in each module.

Value

A data frame with 4 columns giving the total connectivity, intramodular connectivity, extra-modular
connectivity, and the difference of the intra- and extra-modular connectivities for all genes.

Author(s)

Steve Horvath and Peter Langfelder

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

See Also

adjacency

keepCommonProbes Keep probes that are shared among given data sets

Description

This function strips out probes that are not shared by all given data sets, and orders the remaining
common probes using the same order in all sets.

Usage

keepCommonProbes(multiExpr, orderBy = 1)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

orderBy index of the set by which probes are to be ordered.

Value

Expression data in the same format as the input data, containing only common probes.

Author(s)

Peter Langfelder

54 labeledBarplot

See Also

checkSets

labeledBarplot Barplot with text or color labels.

Description

Produce a barplot with extra annotation.

Usage

labeledBarplot(
Matrix, labels,
colorLabels = FALSE,
colored = TRUE,
setStdMargins = TRUE,
stdErrors = NULL,
cex.lab = NULL,
xLabelsAngle = 45,
...)

Arguments

Matrix vector or a matrix to be plotted.

labels labels to annotate the bars underneath the barplot.

colorLabels logical: should the labels be interpreted as colors? If TRUE, the bars will be
labeled by colored squares instead of text. See details.

colored logical: should the bars be divided into segments and colored? If TRUE, assumes
the labels can be interpreted as colors, and the input Matrix is square and
the rows have the same labels as the columns. See details.

setStdMargins
if TRUE, the function wil set margins c(3, 3, 2, 2)+0.2.

stdErrors if given, error bars corresponding to 1.96*stdErrors will be plotted on top
of the bars.

cex.lab character expansion factor for axis labels, including the text labels underneath
the barplot.

xLabelsAngle angle at which text labels under the barplot will be printed.

... other parameters for the function barplot.

Details

Individual bars in the barplot can be identified either by printing the text of the corresponding entry
in labels underneath the bar at the angle specified by xLabelsAngle, or by interpreting the
labels entry as a color (see below) and drawing a correspondingly colored square underneath the
bar.

For reasons of compatibility with other functions, labels are interpreted as colors after stripping
the first two characters from each label. For example, the label "MEturquoise" is interpreted as
the color turquoise.

labeledHeatmap 55

If colored is set, the code assumes that labels can be interpreted as colors, and the input
Matrix is square and the rows have the same labels as the columns. Each bar in the barplot is then
sectioned into contributions from each row entry in Matrix and is colored by the color given by
the entry in labels that corresponds to the row.

Value

None.

Author(s)

Peter Langfelder

labeledHeatmap Produce a labeled heatmap plot

Description

Plots a heatmap plot with color legend, row and column annotation, and optional text within th
heatmap.

Usage

labeledHeatmap(
Matrix,
xLabels, yLabels = NULL,
xSymbols = NULL, ySymbols = NULL,
colorLabels = NULL,
xColorLabels = FALSE, yColorLabels = FALSE,
checkColorsValid = TRUE,
invertColors = FALSE,
setStdMargins = TRUE,
xLabelsPosition = "bottom",
xLabelsAngle = 45,
xLabelsAdj = 1,
colors = NULL,
textMatrix = NULL,
cex.text = NULL, cex.lab = NULL,
plotLegend = TRUE, ...)

Arguments

Matrix numerical matrix to be plotted in the heatmap.

xLabels labels for the columns. See Details.

yLabels labels for the rows. See Details.

xSymbols additional labels used when xLabels are interpreted as colors. See Details.

ySymbols additional labels used when yLabels are interpreted as colors. See Details.

colorLabels logical: should xLabels and yLabels be interpreted as colors? If given,
overrides xColorLabels and yColorLabels below.

xColorLabels logical: should xLabels be interpreted as colors?

56 labeledHeatmap

yColorLabels logical: should yLabels be interpreted as colors?
checkColorsValid

logical: should given colors be checked for validity against the output of colors()
? If this argument is FALSE, invalid color specification will trigger an error.

invertColors logical: should the color order be inverted?
setStdMargins

logical: should standard margins be set before calling the plot function? Stan-
dard margins depend on colorLabels: they are wider for text labels and
narrower for color labels. The defaults are static, that is the function does not
attempt to guess the optimal margins.

xLabelsPosition
a character string specifying the position of labels for the columns. Recognized
values are (unique abbreviations of) "top", "bottom".

xLabelsAngle angle by which the column labels should be rotated.

xLabelsAdj justification parameter for column labels. See par and the description of pa-
rameter "adj".

colors color pallette to be used in the heatmap. Defaults to heat.colors.

textMatrix optional matrix of text entries of the same dimensions as Matrix.

cex.text character expansion factor for textMatrix.

cex.lab character expansion factor for text labels labeling the axes

plotLegend logical: should a color legend be plotted?

... other arguments to functions image.plot (for plotLegend==TRUE) or
heatmap (for plotLegend==FALSE).

Details

The function basically plots a standard heatmap plot of the given Matrix and embellishes it with
row and column labels and/or with text within the heatmap entries. Row and column labels can be
either character strings or color squares, or both.

To get simple text labels, use colorLabels=FALSE and pass the desired row and column labels
in yLabels and xLabels, respectively.

To label rows and columns by color squares, use colorLabels=TRUE; yLabels and xLabels
are then expected to represent valid colors. For reasons of compatibility with other functions, each
entry in yLabels and xLabels is expected to consist of a color designation preceded by 2 char-
acters: an example would be MEturquoise. The first two characters can be arbitrary, they are
stripped. Any labels that do not represent valid colors will be considered text labels and printed in
full, allowing the user to mix text and color labels.

It is also possible to label rows and columns by both color squares and additional text annotation.
To achieve this, use the above technique to get color labels and, additionally, pass the desired text
annotation in the xSymbols and ySymbols arguments.

Value

None.

Author(s)

Peter Langfelder

labeledHeatmap 57

See Also

image.plot, heatmap, colors

Examples

This example illustrates 4 main ways of annotating columns and rows of a heatmap.
Copy and paste the whole example into an R session with an interactive plot window;
alternatively, you may replace the command sizeGrWindow below by opening another graphical device such
as pdf.

Generate a matrix to be plotted

nCol = 8; nRow = 7;
mat = matrix(runif(nCol*nRow, min = -1, max = 1), nRow, nCol);

rowColors = standardColors(nRow);
colColors = standardColors(nRow + nCol)[(nRow+1):(nRow + nCol)];

rowColors;
colColors;

sizeGrWindow(9,7)
par(mfrow = c(2,2))
par(mar = c(4, 5, 4, 6));

Label rows and columns by text:

labeledHeatmap(mat, xLabels = colColors, yLabels = rowColors,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Text-labeled heatmap");

Label rows and columns by colors:

rowLabels = paste("ME", rowColors, sep="");
colLabels = paste("ME", colColors, sep="");

labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Color-labeled heatmap");

Mix text and color labels:

rowLabels[3] = "Row 3";
colLabels[1] = "Column 1";

labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),

58 labels2colors

main = "Mix-labeled heatmap");

Color labels and additional text labels

rowLabels = paste("ME", rowColors, sep="");
colLabels = paste("ME", colColors, sep="");

extraRowLabels = paste("Row", c(1:nRow));
extraColLabels = paste("Column", c(1:nCol));

Extend margins to fit all labels
par(mar = c(6, 6, 4, 6));
labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,

xSymbols = extraColLabels,
ySymbols = extraRowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Text- + color-labeled heatmap");

labels2colors Convert numerical labels to colors.

Description

Converts a vector or array of numerical labels into a corresponding vector or array of colors corre-
sponding to the labels.

Usage

labels2colors(labels, zeroIsGrey = TRUE, colorSeq = NULL)

Arguments

labels Vector of non-negative integer labels.

zeroIsGrey If TRUE, labels 0 will be assigned color grey. Otherwise, labels below 1 will
trigger an error.

colorSeq Color sequence corresponding to labels. If not given, a standard sequence will
be used.

Details

The standard sequence start with well-distinguishable colors, and after about 40 turns into a quasi-
random sampling of all colors available in R with the exception of all shades of grey (and gray).

If the input labels have a dimension attribute, it is copied into the output, meaning the dimensions
of the returned value are the same as those of the input labels.

Value

A vector or array of character strings of the same length or dimensions as labels.

mergeCloseModules 59

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

Examples

labels = c(0:20);
labels2colors(labels);

mergeCloseModules Merge close modules in gene expression data

Description

Merges modules in gene expression networks that are too close as measured by the correlation of
their eigengenes.

Usage

mergeCloseModules(exprData, colors,
cutHeight = 0.2,
MEs = NULL,
impute = TRUE,
useAbs = FALSE,
iterate = TRUE,
relabel = FALSE,
colorSeq = NULL,
getNewMEs = TRUE,
getNewUnassdME = TRUE,
useSets = NULL,
checkDataFormat = TRUE,
unassdColor = ifelse(is.numeric(colors), 0, "grey"),
trapErrors = FALSE,
verbose = 1, indent = 0)

Arguments

exprData Expression data, either a single data frame with rows corresponding to sam-
ples and columns to genes, or in a multi-set format (see checkSets). See
checkDataStructure below.

colors A vector (numeric, character or a factor) giving module colors for genes. The
method only makes sense when genes have the same color label in all sets, hence
a single vector.

cutHeight Maximum dissimilarity (i.e., 1-correlation) that qualifies modules for merging.
MEs If module eigengenes have been calculated before, the user can save some com-

putational time by inputting them. MEs should have the same format as exprData.
If they are not given, they will be calculated.

impute Should missing values be imputed in eigengene calculation? If imputation is dis-
abled, the presence of NA entries will cause the eigengene calculation to fail and
eigengenes will be replaced by their hubgene approximation. See moduleEigengenes
for more details.

60 mergeCloseModules

useAbs Specifies whether absolute value of correlation or plain correlation (of module
eigengenes) should be used in calculating module dissimilarity.

iterate Controls whether the merging procedure should be repeated until there is no
change. If FALSE, only one iteration will be executed.

relabel Controls whether, after merging, color labels should be ordered by module size.

colorSeq Color labels to be used for relabeling. Defaults to the standard color order used
in this package if colors are not numeric, and to integers starting from 1 if
colors is numeric.

getNewMEs Controls whether module eigengenes of merged modules should be calculated
and returned.

getNewUnassdME
When doing module eigengene manipulations, the function does not normally
calculate the eigengene of the ’module’ of unassigned (’grey’) genes. Setting
this option to TRUE will force the calculation of the unassigned eigengene in
the returned newMEs, but not in the returned oldMEs.

useSets A vector of scalar allowing the user to specify which sets will be used to cal-
culate the consensus dissimilarity of module eigengenes. Defaults to all given
sets.

checkDataFormat
If TRUE, the function will check exprData and MEs for correct multi-set
structure. If single set data is given, it will be converted into a format usable for
the function. If FALSE, incorrect structure of input data will trigger an error.

unassdColor Specifies the string that labels unassigned genes. Module of this color will not
enter the module eigengene clustering and will not be merged with other mod-
ules.

trapErrors Controls whether computational errors in calculating module eigengenes, their
dissimilarity, and merging trees should be trapped. If TRUE, errors will be
trapped and the function will return the input colors. If FALSE, errors will
cause the function to stop.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

This function returns the color labels for modules that are obtained from the input modules by
merging ones that are closely related. The relationships are quantified by correlations of module
eigengenes; a “consensus” measure is defined as the minimum over the corresponding relationship
in each set. Once the (dis-)similarity is calculated, average linkage hierarchical clustering of the
module eigengenes is performed, the dendrogram is cut at the height cutHeight and modules on
each branch are merged. The process is (optionally) repeated until no more modules are merged.

If, for a particular module, the module eigengene calculation fails, a hubgene approximation will
be used.

The user should be aware that if a computational error occurs and trapErrors==TRUE, the
returned list (see below) will not contain all of the components returned upon normal execution.

moduleColor.getMEprefix 61

Value

If no errors occurred, a list with components

colors Color labels for the genes corresponding to merged modules. The function at-
tempts to mimic the mode of the input colors: if the input colors is nu-
meric, character and factor, respectively, so is the output. Note, however, that
if the fnction performs relabeling, a standard sequence of labels will be used:
integers starting at 1 if the input colors is numeric, and a sequence of color
labels otherwise (see colorSeq above).

dendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
most recently computed tree. If iterate was set TRUE, this will be the den-
drogram of the merged modules, otherwise it will be the dendrogram of the
original modules.

oldDendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
original modules.

cutHeight The input cutHeight.

oldMEs Module eigengenes of the original modules in the sets given by useSets.

newMEs Module eigengenes of the merged modules in the sets given by useSets.

allOK A boolean set to TRUE.

colors A copy of the input colors.

allOK a boolean set to FALSE.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

moduleColor.getMEprefix
Get the prefix used to label module eigengenes.

Description

Returns the currently used prefix used to label module eigengenes. When returning module eigen-
genes in a dataframe, names of the corresponding columns will start with the given prefix.

Usage

moduleColor.getMEprefix()

Details

Returns the prefix used to label module eigengenes. When returning module eigengenes in a
dataframe, names of the corresponding columns will consist of the corresponfing color label pre-
ceded by the given prefix. For example, if the prefix is "PC" and the module is turquoise, the
corresponding module eigengene will be labeled "PCturquoise". Most of old code assumes "PC",
but "ME" is more instructive and used in some newer analyses.

62 moduleEigengenes

Value

A character string.

Note

Currently the standard prefix is "ME" and there is no way to change it.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

moduleEigengenes

moduleEigengenes Calculate module eigengenes.

Description

Calculates module eigengenes (1st principal component) of modules in a given single dataset.

Usage

moduleEigengenes(expr,
colors,
impute = TRUE,
nPC = 1,
align = "along average",
excludeGrey = FALSE,
grey = ifelse(is.numeric(colors), 0, "grey"),
subHubs = TRUE,
trapErrors = FALSE,
returnValidOnly = trapErrors,
softPower = 6,
verbose = 0, indent = 0)

Arguments

expr Expression data for a single set in the form of a data frame where rows are
samples and columns are genes (probes).

colors A vector of the same length as the number of probes in expr, giving module
color for all probes (genes). Color "grey" is reserved for unassigned genes.

impute If TRUE, expression data will be checked for the presence of NA entries and if the
latter are present, numerical data will be imputed, using function impute.knn
and probes from the same module as the missing datum. The function impute.knn
uses a fixed random seed giving repeatable results.

moduleEigengenes 63

nPC Number of principal components and variance explained entries to be calculated.
Note that only the first principal component is returned; the rest are used only
for the calculation of proportion of variance explained. The number of returned
variance explained entries is currently min(nPC, 10). If given nPC is greater
than 10, a warning is issued.

align Controls whether eigengenes, whose orientation is undetermined, should be
aligned with average expression (align = "along average", the default)
or left as they are (align = ""). Any other value will trigger an error.

excludeGrey Should the improper module consisting of ’grey’ genes be excluded from the
eigengenes?

grey Value of colors designating the improper module. Note that if colors is a
factor of numbers, the default value will be incorrect.

subHubs Controls whether hub genes should be substituted for missing eigengenes. If
TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the
error was trapped) will be replaced by a weighted average of the most con-
nected hub genes in the corresponding module. If this calculation fails, or if
subHubs==FALSE, the value of trapErrors will determine whether the
offending module will be removed or whether the function will issue an error
and stop.

trapErrors Controls handling of errors from that may arise when there are too many NA
entries in expression data. If TRUE, errors from calling these functions will
be trapped without abnormal exit. If FALSE, errors will cause the function
to stop. Note, however, that subHubs takes precedence in the sense that if
subHubs==TRUE and trapErrors==FALSE, an error will be issued only
if both the principal component and the hubgene calculations have failed.

returnValidOnly
Boolean. Controls whether the returned data frame of module eigengenes con-
tains columns corresponding only to modules whose eigengenes or hub genes
could be calculated correctly (TRUE), or whether the data frame should have
columns for each of the input color labels (FALSE).

softPower The power used in soft-thresholding the adjacency matrix. Only used when the
hubgene approximation is necessary because the principal component calcula-
tion failed. It must be non-negative. The default value should only be changed
if there is a clear indication that it leads to incorrect results.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

Module eigengene is defined as the first principal component of the expression matrix of the cor-
responding module. The calculation may fail if the expression data has too many missing en-
tries. Handling of such errors is controlled by the arguments subHubs and trapErrors. If
subHubs==TRUE, errors in principal component calculation will be trapped and a substitute cal-
culation of hubgenes will be attempted. If this fails as well, behaviour depends on trapErrors:
if TRUE, the offending module will be ignored and the return value will allow the user to remove
the module from further analysis; if FALSE, the function will stop.

From the user’s point of view, setting trapErrors=FALSE ensures that if the function returns
normally, there will be a valid eigengene (principal component or hubgene) for each of the input

64 moduleEigengenes

colors. If the user sets trapErrors=TRUE, all calculational (but not input) errors will be trapped,
but the user should check the output (see below) to make sure all modules have a valid returned
eigengene.

While the principal component calculation can fail even on relatively sound data (it does not take all
that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data
for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously
wrong with the data.

Value

A list with the following components:

eigengenes Module eigengenes in a dataframe, with each column corresponding to one
eigengene. The columns are named by the corresponding color with an "ME"
prepended, e.g., MEturquoise etc. If returnValidOnly==FALSE, mod-
ule eigengenes whose calculation failed have all components set to NA.

averageExpr If align == "along average", a dataframe containing average normal-
ized expression in each module. The columns are named by the corresponding
color with an "AE" prepended, e.g., AEturquoise etc.

varExplained A dataframe in which each column corresponds to a module, with the compo-
nent varExplained[PC, module] giving the variance of module module
explained by the principal component no. PC. The calculation is exact irrespec-
tive of the number of computed principal components. At most 10 variance
explained values are recorded in this dataframe.

nPC A copy of the input nPC.

validMEs A boolean vector. Each component (corresponding to the columns in data) is
TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid
eigengenes include both principal components and their hubgene approxima-
tions. When returnValidOnly==FALSE, by definition all returned eigen-
genes are valid and the entries of validMEs are all TRUE.

validColors A copy of the input colors with entries corresponding to invalid modules set to
grey if given, otherwise 0 if colors is numeric and "grey" otherwise.

allOK Boolean flag signalling whether all eigengenes have been calculated correctly,
either as principal components or as the hubgene average approximation.

allPC Boolean flag signalling whether all returned eigengenes are principal compo-
nents.

isPC Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the first principal component and
FALSE if it is the hubgene approximation or is invalid.

isHub Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the hubgene approximation and FALSE
if it is the first principal component or is invalid.

validAEs Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding module average expression is valid.

allAEOK Boolean flag signalling whether all returned module average expressions contain
valid data. Note that returnValidOnly==TRUE does not imply allAEOK==TRUE:
some invalid average expressions may be returned if their corresponding eigen-
genes have been calculated correctly.

moduleNumber 65

Author(s)

Steve Horvath 〈SHorvath@mednet.ucla.edu〉, Peter Langfelder 〈Peter.Langfelder@gmail.com〉

References

Zhang, B. and Horvath, S. (2005), "A General Framework for Weighted Gene Co-Expression Net-
work Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article
17

See Also

svd, impute.knn

moduleNumber Fixed-height cut of a dendrogram.

Description

Detects branches of on the input dendrogram by performing a fixed-height cut.

Usage

moduleNumber(dendro, cutHeight = 0.9, minSize = 50)

Arguments

dendro a hierarchical clustering dendorgram such as one returned by hclust.

cutHeight Maximum joining heights that will be considered.

minSize Minimum cluster size.

Details

All contiguous branches below the height cutHeight that contain at least minSize objects are
assigned unique positive numerical labels; all unassigned objects are assigned label 0.

Value

A vector of numerical labels giving the assigment of each object.

Note

The numerical labels may not be sequential. See normalizeLabels for a way to put the labels
into a standard order.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

hclust, cutree, normalizeLabels

66 multiSetMEs

multiSetMEs Calculate module eigengenes.

Description

Calculates module eigengenes for several sets.

Usage

multiSetMEs(exprData,
colors,
universalColors = NULL,
useSets = NULL,
useGenes = NULL,
impute = TRUE,
nPC = 1,
align = "along average",
excludeGrey = FALSE,
grey = ifelse(is.null(universalColors), ifelse(is.numeric(colors), 0, "grey"),

ifelse(is.numeric(universalColors), 0, "grey")),
subHubs = TRUE,
trapErrors = FALSE,
returnValidOnly = trapErrors,
softPower = 6,
verbose = 1, indent = 0)

Arguments

exprData Expression data in a multi-set format (see checkSets). A vector of lists, with
each list corresponding to one microarray dataset and expression data in the
component data, that is expr[[set]]$data[sample, probe] is the
expression of probe probe in sample sample in dataset set. The number of
samples can be different between the sets, but the probes must be the same.

colors A matrix of dimensions (number of probes, number of sets) giving the module
assignment of each gene in each set. The color "grey" is interpreted as unas-
signed.

universalColors
Alternative specification of module assignment. A single vector of length (num-
ber of probes) giving the module assignment of each gene in all sets (that is the
modules are common to all sets). If given, takes precedence over color.

useSets If calculations are requested in (a) selected set(s) only, the set(s) can be specified
here. Defaults to all sets.

useGenes Can be used to restrict calculation to a subset of genes (the same subset in all
sets). If given, validColors in the returned list will only contain colors for
the genes specified in useGenes.

impute Logical. If TRUE, expression data will be checked for the presence of NA en-
tries and if the latter are present, numerical data will be imputed, using function
impute.knn and probes from the same module as the missing datum. The
function impute.knn uses a fixed random seed giving repeatable results.

multiSetMEs 67

nPC Number of principal components to be calculated. If only eigengenes are needed,
it is best to set it to 1 (default). If variance explained is needed as well, use value
NULL. This will cause all principal components to be computed, which is slower.

align Controls whether eigengenes, whose orientation is undetermined, should be
aligned with average expression (align = "along average", the default)
or left as they are (align = ""). Any other value will trigger an error.

excludeGrey Should the improper module consisting of ’grey’ genes be excluded from the
eigengenes?

grey Value of colors or universalColors (whichever applies) designating the
improper module. Note that if the appropriate colors argument is a factor of
numbers, the default value will be incorrect.

subHubs Controls whether hub genes should be substituted for missing eigengenes. If
TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the
error was trapped) will be replaced by a weighted average of the most con-
nected hub genes in the corresponding module. If this calculation fails, or if
subHubs==FALSE, the value of trapErrors will determine whether the
offending module will be removed or whether the function will issue an error
and stop.

trapErrors Controls handling of errors from that may arise when there are too many NA
entries in expression data. If TRUE, errors from calling these functions will
be trapped without abnormal exit. If FALSE, errors will cause the function
to stop. Note, however, that subHubs takes precedence in the sense that if
subHubs==TRUE and trapErrors==FALSE, an error will be issued only
if both the principal component and the hubgene calculations have failed.

returnValidOnly
Boolean. Controls whether the returned data frames of module eigengenes con-
tain columns corresponding only to modules whose eigengenes or hub genes
could be calculated correctly in every set (TRUE), or whether the data frame
should have columns for each of the input color labels (FALSE).

softPower The power used in soft-thresholding the adjacency matrix. Only used when the
hubgene approximation is necessary because the principal component calcula-
tion failed. It must be non-negative. The default value should only be changed
if there is a clear indication that it leads to incorrect results.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

This function calls moduleEigengenes for each set in exprData.

Module eigengene is defined as the first principal component of the expression matrix of the cor-
responding module. The calculation may fail if the expression data has too many missing en-
tries. Handling of such errors is controlled by the arguments subHubs and trapErrors. If
subHubs==TRUE, errors in principal component calculation will be trapped and a substitute cal-
culation of hubgenes will be attempted. If this fails as well, behaviour depends on trapErrors:
if TRUE, the offending module will be ignored and the return value will allow the user to remove the
module from further analysis; if FALSE, the function will stop. If universalColors is given,
any offending module will be removed from all sets (see validMEs in return value below).

68 multiSetMEs

From the user’s point of view, setting trapErrors=FALSE ensures that if the function returns
normally, there will be a valid eigengene (principal component or hubgene) for each of the input
colors. If the user sets trapErrors=TRUE, all calculational (but not input) errors will be trapped,
but the user should check the output (see below) to make sure all modules have a valid returned
eigengene.

While the principal component calculation can fail even on relatively sound data (it does not take all
that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data
for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously
wrong with the data.

Value

A vector of lists similar in spirit to the input exprData. For each set there is a list with the
following components:

data Module eigengenes in a data frame, with each column corresponding to one
eigengene. The columns are named by the corresponding color with an "ME"
prepended, e.g., MEturquoise etc. Note that, when trapErrors == TRUE
and returnValidOnly==FALSE, this data frame also contains entries cor-
responding to removed modules, if any. (validMEs below indicates which
eigengenes are valid and allOK whether all module eigengens were success-
fully calculated.)

averageExpr If align == "along average", a dataframe containing average normal-
ized expression in each module. The columns are named by the corresponding
color with an "AE" prepended, e.g., AEturquoise etc.

varExplained A dataframe in which each column corresponds to a module, with the compo-
nent varExplained[PC, module] giving the variance of module module
explained by the principal component no. PC. This is only accurate if all princi-
pal components have been computed (input nPC = NULL). At most 5 principal
components are recorded in this dataframe.

nPC A copy of the input nPC.
validMEs A boolean vector. Each component (corresponding to the columns in data) is

TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid
eigengenes include both principal components and their hubgene approxima-
tions. When returnValidOnly==FALSE, by definition all returned eigen-
genes are valid and the entries of validMEs are all TRUE.

validColors A copy of the input colors (universalColors if set, otherwise colors[,
set]) with entries corresponding to invalid modules set to grey if given, oth-
erwise 0 if the appropriate input colors are numeric and "grey" otherwise.

allOK Boolean flag signalling whether all eigengenes have been calculated correctly,
either as principal components or as the hubgene approximation. If universalColors
is set, this flag signals whether all eigengenes are valid in all sets.

allPC Boolean flag signalling whether all returned eigengenes are principal compo-
nents. This flag (as well as the subsequent ones) is set independently for each
set.

isPC Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the first principal component and
FALSE if it is the hubgene approximation or is invalid.

isHub Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the hubgene approximation and FALSE
if it is the first principal component or is invalid.

nearestNeighborConnectivityMS 69

validAEs Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding module average expression is valid.

allAEOK Boolean flag signalling whether all returned module average expressions contain
valid data. Note that returnValidOnly==TRUE does not imply allAEOK==TRUE:
some invalid average expressions may be returned if their corresponding eigen-
genes have been calculated correctly.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

moduleEigengenes

nearestNeighborConnectivityMS
Connectivity to a constant number of nearest neighbors across multi-
ple data sets

Description

Given expression data from several sets and basic network parameters, the function calculates con-
nectivity of each gene to a given number of nearest neighbors in each set.

Usage

nearestNeighborConnectivityMS(multiExpr, nNeighbors = 50, power = 6,
type = "unsigned", corFnc = "cor", corOptions = "use = 'p'",
blockSize = 1000,
sampleLinks = NULL, nLinks = 5000, setSeed = 36492,
verbose = 1, indent = 0)

Arguments

multiExpr expression data in multi-set format. A vector of lists, one list per set. In each list
there must be a component named data whose content is a matrix or dataframe
or array of dimension 2 containing the expression data. Rows correspond to
samples and columns to genes (probes).

nNeighbors number of nearest neighbors to use.

power soft thresholding power for network construction. Should be a number greater
than 1.

type a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

70 nearestNeighborConnectivity

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored after.

verbose integer controlling the level of verbosity. 0 means silent.

indent integer controlling indentation of output. Each unit above 0 adds two spaces.

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this
case we take the nNeighbors nodes with the highest connection strength to gene i. The adja-
cency strengths are calculated by correlating the given expression data using the function supplied in
corFNC and transforming them into adjacency according to the given network type and power.

Value

A matrix in which columns correspond to sets and rows to genes; each entry contains the nearest
neighbor connectivity of the corresponding gene.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity, nearestNeighborConnectivity

nearestNeighborConnectivity
Connectivity to a constant number of nearest neighbors

Description

Given expression data and basic network parameters, the function calculates connectivity of each
gene to a given number of nearest neighbors.

Usage

nearestNeighborConnectivity(datExpr,
nNeighbors = 50, power = 6, type = "unsigned",
corFnc = "cor", corOptions = "use = 'p'",
blockSize = 1000,
sampleLinks = NULL, nLinks = 5000, setSeed = 38457,
verbose = 1, indent = 0)

nearestNeighborConnectivity 71

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

nNeighbors number of nearest neighbors to use.

power soft thresholding power for network construction. Should be a number greater
than 1.

type a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored upon exit.

verbose integer controlling the level of verbosity. 0 means silent.

indent integer controlling indentation of output. Each unit above 0 adds two spaces.

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this
case we take the nNeighbors nodes with the highest connection strength to gene i. The adja-
cency strengths are calculated by correlating the given expression data using the function supplied in
corFNC and transforming them into adjacency according to the given network type and power.

Value

A vector with one component for each gene containing the nearest neighbor connectivity.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity

72 networkConcepts

networkConcepts Calculations of network concepts

Description

This functions calculates various network concepts (topological properties, network indices) of a
network calculated from expression data.

Usage

networkConcepts(datExpr, power = 1, trait = NULL, networkType = "unsigned")

Arguments

datExpr a data frame containg the expression data, with rows corresponding to samples
and columns to genes (nodes).

power soft thresholding power.

trait optional specification of a sample trait. A vector of length equal the number of
samples in datExpr.

networkType network type. Recognized values are (unique abbreviations of) "unsigned",
"signed", and "signed hybrid".

Value

A list containing the values of various network concepts. The component names indicate the mean-
ing of each component.

Author(s)

Jun Dong, Steve Horvath, Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

networkScreeningGS 73

networkScreeningGS function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

networkScreeningGS(datExpr, datME, GS, oddPower = 3, blockSize = 1000, minimumSampleSize = ..minNSamples,
addGS = TRUE)

Arguments

datExpr Describe datExpr here

datME Describe datME here

GS Describe GS here

oddPower Describe oddPower here

blockSize Describe blockSize here
minimumSampleSize

Describe minimumSampleSize here

addGS Describe addGS here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.4 Warning

....

74 networkScreeningGS

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (datExpr, datME, GS, oddPower = 3, blockSize = 1000,

MinimumSampleSize = 4, addGS = TRUE)
{

oddPower = as.integer(oddPower)
if (as.integer(oddPower/2) == oddPower/2) {

oddPower = oddPower + 1
}
nMEs = dim(as.matrix(datME))[[2]]
nGenes = dim(as.matrix(datExpr))[[2]]
GS.Weighted = rep(0, nGenes)
if (dim(as.matrix(datExpr))[[1]] != dim(as.matrix(datME))[[1]])

stop(paste("Expression data and the module eigengenes have different\n",
" numbers of observations (arrays). Specifically:\n",
" dim(as.matrix(datExpr))[[1]] != dim(as.matrix(datME))[[1]] "))

if (dim(as.matrix(datExpr))[[2]] != length(GS))
stop(paste("The number of genes in the expression data does not match\n",

" the length of the genes significance variable. Specifically:\n",
" dim(as.matrix(datExpr))[[2]] != length(GS) "))

nAvailable = apply(as.matrix(!is.na(datExpr)), 2, sum)
ExprVariance = apply(as.matrix(datExpr), 2, var, na.rm = T)
restrictGenes = nAvailable >= 4 & ExprVariance > 0
numberUsefulGenes = sum(restrictGenes, na.rm = T)
if (numberUsefulGenes < 3) {

stop(paste("IMPORTANT: there are fewer than 3 useful genes. \n",
" Violations: either fewer than 4 observations or they are constant.\n",
" WGCNA cannot be used for these data. Hint: collect more arrays or input genes that vary."))

}
nBlocks = as.integer(nMEs/blockSize)
if (nBlocks > 0)

for (i in 1:nBlocks) {
printFlush(paste("block number = ", i))
index1 = c(1:blockSize) + (i - 1) * blockSize
datMEBatch = datME[, index1]
datKMEBatch = as.matrix(signedKME(datExpr, datMEBatch,

outputColumnName = "MM."))
ESBatch = hubGeneSignificance(datKMEBatch^oddPower,

GS^oddPower)
if (nGenes == nMEs) {

networkScreening 75

diag(datKMEBatch[index1,]) = 0
datKMEBatch[is.na(datKMEBatch)] = 0
ESBatch[is.na(ESBatch)] = 0

}
GS.WeightedBatch = as.matrix(datKMEBatch)^oddPower %*%

as.matrix(ESBatch)
GS.Weighted = GS.Weighted + GS.WeightedBatch

}
if (nMEs - nBlocks * blockSize > 0) {

restindex = c((nBlocks * blockSize + 1):nMEs)
datMEBatch = datME[, restindex]
datKMEBatch = as.matrix(signedKME(datExpr, datMEBatch,

outputColumnName = "MM."))
ESBatch = hubGeneSignificance(datKMEBatch^oddPower, GS^oddPower)
if (nGenes == nMEs) {

diag(datKMEBatch[restindex,]) = 0
datKMEBatch[is.na(datKMEBatch)] = 0
ESBatch[is.na(ESBatch)] = 0

}
GS.WeightedBatch = as.matrix(datKMEBatch)^oddPower %*%

ESBatch
GS.Weighted = GS.Weighted + GS.WeightedBatch

}
GS.Weighted = GS.Weighted/nMEs
GS.Weighted[nAvailable < MinimumSampleSize] = NA
rankGS.Weighted = rank(-GS.Weighted, ties.method = "first")
rankGS = rank(-GS, ties.method = "first")
printFlush(paste("Proportion of agreement between GS.Weighted and GS:"))
for (i in c(10, 20, 50, 100, 200, 500, 1000)) {

printFlush(paste("Top ", i, " list of genes: prop. of agreement = ",
signif(sum(rankGS.Weighted <= i & rankGS <= i, na.rm = T)/i,

3)))
}
if (mean(abs(GS.Weighted), na.rm = T) > 0) {

GS.Weighted = GS.Weighted/mean(abs(GS.Weighted), na.rm = T) *
mean(abs(GS), na.rm = T)

}
if (addGS)

GS.Weighted = apply(data.frame(GS.Weighted, GS), 1, mean,
na.rm = T)

datout = data.frame(GS.Weighted, GS)
datout

}

networkScreening function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

networkScreening(y, datME, datExpr, oddPower = 3, blockSize = 1000, minimumSampleSize = ..minNSamples,
addMEy = TRUE, removeDiag = FALSE, weightESy = 0.5, getQValues = TRUE)

76 networkScreening

Arguments

y Describe y here

datME Describe datME here

datExpr Describe datExpr here

oddPower Describe oddPower here

blockSize Describe blockSize here
minimumSampleSize

Describe minimumSampleSize here

addMEy Describe addMEy here

removeDiag Describe removeDiag here

weightESy Describe weightESy here

getQValues Describe weightESy here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.5 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

0.5. WARNING 77

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (y, datME, datExpr, oddPower = 3, blockSize = 1000,

MinimumSampleSize = ..minNSamples, addMEy = TRUE, removeDiag = FALSE,
weightESy = 0.5)

{
oddPower = as.integer(oddPower)
if (as.integer(oddPower/2) == oddPower/2) {

oddPower = oddPower + 1
}
nMEs = dim(as.matrix(datME))[[2]]
nGenes = dim(as.matrix(datExpr))[[2]]
if (nGenes > nMEs & addMEy) {

datME = data.frame(y, datME)
}
nMEs = dim(as.matrix(datME))[[2]]
RawCor.Weighted = rep(0, nGenes)
Cor.Standard = as.numeric(cor(y, datExpr, use = "p"))
NoAvailable = apply(!is.na(datExpr), 2, sum)
Cor.Standard[NoAvailable < MinimumSampleSize] = NA
if (nGenes == 1)

RawCor.Weighted = as.numeric(cor(y, datExpr, use = "p"))
nBlocks = as.integer(nMEs/blockSize)
if (nBlocks > 0)

for (i in 1:nBlocks) {
printFlush(paste("block number = ", i))
index1 = c(1:blockSize) + (i - 1) * blockSize
datMEBatch = datME[, index1]
datKMEBatch = as.matrix(signedKME(datExpr, datMEBatch,

outputColumnName = "MM."))
ES.CorBatch = as.vector(cor(as.numeric(as.character(y)),

datMEBatch, use = "p"))
ES.CorBatch[ES.CorBatch > 0.999] = weightESy * 1 +

(1 - weightESy) * max(abs(ES.CorBatch[ES.CorBatch <
0.999]), na.rm = T)

if (nGenes == nMEs & removeDiag) {
diag(datKMEBatch[index1,]) = 0

}
if (nGenes == nMEs) {

datKMEBatch[is.na(datKMEBatch)] = 0
ES.CorBatch[is.na(ES.CorBatch)] = 0

}
RawCor.WeightedBatch = as.matrix(datKMEBatch)^oddPower %*%

as.matrix(ES.CorBatch^oddPower)
RawCor.Weighted = RawCor.Weighted + RawCor.WeightedBatch

}
if (nMEs - nBlocks * blockSize > 0) {

restindex = c((nBlocks * blockSize + 1):nMEs)
datMEBatch = datME[, restindex]
datKMEBatch = as.matrix(signedKME(datExpr, datMEBatch,

outputColumnName = "MM."))
ES.CorBatch = as.vector(cor(as.numeric(as.character(y)),

78 networkScreening

datMEBatch, use = "p"))
ES.CorBatch[ES.CorBatch > 0.999] = weightESy * 1 + (1 -

weightESy) * max(abs(ES.CorBatch[ES.CorBatch < 0.999]),
na.rm = T)

if (nGenes == nMEs & removeDiag) {
diag(datKMEBatch[restindex,]) = 0

}
if (nGenes == nMEs) {

datKMEBatch[is.na(datKMEBatch)] = 0
ES.CorBatch[is.na(ES.CorBatch)] = 0

}
RawCor.WeightedBatch = as.matrix(datKMEBatch)^oddPower %*%

ES.CorBatch^oddPower
RawCor.Weighted = RawCor.Weighted + RawCor.WeightedBatch

}
RawCor.Weighted = RawCor.Weighted/nMEs
RawCor.Weighted[NoAvailable < MinimumSampleSize] = NA
if (max(abs(RawCor.Weighted), na.rm = T) == 1)

RawCor.Weighted = RawCor.Weighted/1.0000001
if (max(abs(Cor.Standard), na.rm = T) == 1)

Cor.Standard = Cor.Standard/1.0000001
RawZ.Weighted = sqrt(NoAvailable - 2) * RawCor.Weighted/sqrt(1 -

RawCor.Weighted^2)
Z.Standard = sqrt(NoAvailable - 2) * Cor.Standard/sqrt(1 -

Cor.Standard^2)
if (sum(abs(Z.Standard), na.rm = T) > 0) {

Z.Weighted = RawZ.Weighted/sum(abs(RawZ.Weighted), na.rm = T) *
sum(abs(Z.Standard), na.rm = T)

}
h1 = Z.Weighted/sqrt(NoAvailable - 2)
Cor.Weighted = h1/sqrt(1 + h1^2)
p.Weighted = as.numeric(2 * (1 - pt(abs(Z.Weighted), NoAvailable -

2)))
p.Standard = 2 * (1 - pt(abs(Z.Standard), NoAvailable - 2))
p.Weighted2 = p.Weighted
p.Standard2 = p.Standard
p.Weighted2[is.na(p.Weighted)] = 1
p.Standard2[is.na(p.Standard)] = 1
q.Weighted = try(qvalue(p.Weighted2)$qvalues)
q.Standard = try(qvalue(p.Standard2)$qvalues)
if (class(q.Weighted) == "try-error")

q.Weighted = rep(NA, length(p.Weighted))
if (class(q.Standard) == "try-error")

q.Standard = rep(NA, length(p.Standard))
rankCor.Weighted = rank(-abs(Cor.Weighted), ties.method = "first")
rankCor.Standard = rank(-abs(Cor.Standard), ties.method = "first")
printFlush(paste("Proportion of agreement between lists based on abs(Cor.Weighted) and abs(Cor.Standard):"))
for (i in c(10, 20, 50, 100, 200, 500, 1000)) {

printFlush(paste("Top ", i, " list of genes: prop. agree = ",
signif(sum(rankCor.Weighted <= i & rankCor.Standard <=

i, na.rm = T)/i, 3)))
}
datout = data.frame(p.Weighted, q.Weighted, Cor.Weighted,

Z.Weighted, p.Standard, q.Standard, Cor.Standard, Z.Standard)
datout

}

normalizeLabels 79

normalizeLabels Transform numerical labels into normal order.

Description

Transforms numerical labels into normal order, that is the largest group will be labeled 1, next
largest 2 etc. Label 0 is optionally preserved.

Usage

normalizeLabels(labels, keepZero = TRUE)

Arguments

labels Numerical labels.

keepZero If TRUE (the default), labels 0 are preserved.

Value

A vector of the same length as input, containing the normalized labels.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

nPresent Number of present data entries.

Description

A simple sum of present entries in the argument.

Usage

nPresent(x)

Arguments

x data in which to count number of present entries.

Value

A single number giving the number of present entries in x.

Author(s)

Steve Horvath

80 numbers2colors

numbers2colors Color representation for a numeric variable

Description

The function creates a color represenation for the given numeric input.

Usage

numbers2colors(
x,
signed,
centered = signed,
lim = NULL,
colors = if (signed) greenWhiteRed(100) else greenWhiteRed(100)[50:100],
naColor = "grey")

Arguments

x a vector or matrix of numbers. Missing values are allowed and will be assigned
the color given in naColor. If a matrix, each column of the matrix is processed
separately and the return value will be a matrix of colors.

signed logical: should x be considered signed? If TRUE, the default setting is to use
to use a palette that starts with green for the most negative values, continues
with white for values around zero and turns red for positive values. If FALSE,
the default palette ranges from white for minimum values to red for maximum
values.

centered logical. If TRUE and signed==TRUE, numeric value zero will correspond to
the middle of the color palette. If FALSE or signed==FALSE, the middle of
the color palette will correspond to the average of the minimum and maximum
value.

lim optional specification of limits, that is numeric values that should correspond to
the first and last entry of colors.

colors color palette to represent the given numbers.

naColor color to represent missing values in x.

Details

Each column of x is processed individually, meaning that the color palette is adjusted individually
for each column of x.

Value

A vector or matrix (of the same dimensions as x) of colors.

Author(s)

Peter Langfelder

orderMEs 81

See Also

labels2colors for color coding of ordinal labels.

orderMEs Put close eigenvectors next to each other

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each
other.

Usage

orderMEs(MEs, greyLast = TRUE,
greyName = paste(moduleColor.getMEprefix(), "grey", sep=""),
orderBy = 1, order = NULL,
useSets = NULL, verbose = 0, indent = 0)

Arguments

MEs Module eigengenes in a multi-set format (see checkSets). A vector of lists,
with each list corresponding to one dataset and the module eigengenes in the
component data, that is MEs[[set]]$data[sample, module] is the
expression of the eigengene of module module in sample sample in dataset
set. The number of samples can be different between the sets, but the modules
must be the same.

greyLast Normally the color grey is reserved for unassigned genes; hence the grey module
is not a proper module and it is conventional to put it last. If this is not desired,
set the parameter to FALSE.

greyName Name of the grey module eigengene.

orderBy Specifies the set by which the eigengenes are to be ordered (in all other sets as
well). Defaults to the first set in useSets (or the first set, if useSets is not
given).

order Allows the user to specify a custom ordering.

useSets Allows the user to specify for which sets the eigengene ordering is to be per-
formed.

verbose Controls verbostity of printed progress messages. 0 means silent, nonzero ver-
bose.

indent A single non-negative integer controling indentation of printed messages. 0
means no indentation, each unit above zero adds two spaces.

Details

Ordering module eigengenes is useful for plotting purposes. For this function the order can be spec-
ified explicitly, or a set can be given in which the correlations of the eigengenes will determine the
order. For the latter, a hierarchical dendrogram is calculated and the order given by the dendrogram
is used for the eigengenes in all other sets.

82 pickHardThreshold

Value

A vector of lists of the same type as MEs containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

See Also

moduleEigengenes, multiSetMEs, consensusOrderMEs

pickHardThreshold Analysis of scale free topology for hard-thresholding.

Description

Analysis of scale free topology for multiple hard thresholds. The aim is to help the user pick an
appropriate threshold for network construction.

Usage

pickHardThreshold(
datExpr,
RsquaredCut = 0.85,
cutVector = seq(0.1, 0.9, by = 0.05),
removeFirst = FALSE, nBreaks = 10,
corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr expression data in a matrix or data frame. Rows correspond to samples and
columns to genes.

RsquaredCut desired minimum scale free topology fitting index R2.

cutVector a vector of hard threshold cuts for which the scale free topology fit indices are
to be calculated.

removeFirst should the first bin be removed from the connectivity histogram?

nBreaks number of bins in connectivity histograms

corFnc a character string giving the correlation function to be used in adjacency calcu-
lation.

corOptions further options to the correlation function specified in corFnc.

Details

The function calculates unsigned networks by thresholding the correlation matrix using thresholds
given in cutVector. For each power the scale free topology fit index is calculated and returned
along with other information on connectivity.

pickSoftThreshold 83

Value

A list with the following components:

cutEstimate estimate of an appropriate hard-thresholding cut: the lowest cut for which the
scale free topology fitR2 exceeds RsquaredCut. IfR2 is below RsquaredCut
for all cuts, NA is returned.

fitIndices a data frame containing the fit indices for scale free topology. The columns
contain the hard threshold, adjusted R2 for the linear fit, the linear coefficient,
adjusted R2 for a more complicated fit models, mean connectivity, median con-
nectivity and maximum connectivity.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

signumAdjacencyFunction

pickSoftThreshold Analysis of scale free topology for soft-thresholding

Description

Analysis of scale free topology for multiple soft thresholding powers. The aim is to help the user
pick an appropriate soft-thresholding power for network construction.

Usage

pickSoftThreshold(
datExpr,
RsquaredCut = 0.85,
powerVector = c(seq(1, 10, by = 1), seq(12, 20, by = 2)),
removeFirst = FALSE, nBreaks = 10, blockSize = 1000,
corFnc = "cor", corOptions = "use = 'p'",
networkType = "unsigned",
verbose = 0, indent = 0)

Arguments

datExpr expression data in a matrix or data frame. Rows correspond to samples and
columns to genes.

RsquaredCut desired minimum scale free topology fitting index R2.

powerVector a vector of soft thresholding powers for which the scale free topology fit indices
are to be calculated.

84 pickSoftThreshold

removeFirst should the first bin be removed from the connectivity histogram?

nBreaks number of bins in connectivity histograms

blockSize block size into which the calculation of connectivity should be broken up. If R
runs into memory problems, decrease this value.

corFnc a character string giving the correlation function to be used in adjacency calcu-
lation.

corOptions further options to the correlation function specified in corFnc.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function calculates unsigned networks by raising the absolute value of the correlation matrix to
the powers given in powerVector. For each power the scale free topology fit index is calculated
and returned along with other information on connectivity.

Value

A list with the following components:

powerEstimate
estimate of an appropriate soft-thresholding power: the lowest power for which
the scale free topology fitR2 exceeds RsquaredCut. IfR2 is below RsquaredCut
for all powers, NA is returned.

fitIndices a data frame containing the fit indices for scale free topology. The columns
contain the soft-thresholding power, adjusted R2 for the linear fit, the linear
coefficient, adjusted R2 for a more complicated fit models, mean connectivity,
median connectivity and maximum connectivity.

Author(s)

Steve Horvath and Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency, softConnectivity

plotClusterTreeSamples 85

plotClusterTreeSamples
Annotated clustering dendrogram of microarray samples

Description

This function plots an annotated clustering dendorgram of microarray samples.

Usage

plotClusterTreeSamples(
datExpr,
y = NULL,
traitLabels = NULL,
main = if (is.null(y)) "Sample dendrogram" else "Sample dendrogram and trait indicator",
setLayout = TRUE, autoColorHeight = TRUE, colorHeight = 0.3,
dendroLabels = NULL,
addGuide = FALSE, guideAll = TRUE,
guideCount = NULL, guideHang = 0.2,
cex.traitLabels = 0.8,
cex.dendroLabels = 0.9,
marAll = c(1, 5, 3, 1),
saveMar = TRUE,
abHeight = NULL, abCol = "red",
...)

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

y microarray sample trait. Either a vector with one entry per sample, or a matrix in
which each column corresponds to a (different) trait and each row to a sample.

traitLabels labels to be printed next to the color rows depicting sample traits. Defaults to
column names of y.

main title for the plot.

setLayout logical: should the plotting device be partitioned into a standard layout? If
FALSE, the user is responsible for partitioning. The function expects two re-
gions of the same width, the first one immediately above the second one.

autoColorHeight
logical: should the height of the color area below the dendrogram be automati-
cally adjusted for the number of traits? Only effective if setLayout is TRUE.

colorHeight Specifies the height of the color area under dendrogram as a fraction of the
height of the dendrogram area. Only effective when autoColorHeight
above is FALSE.

dendroLabels dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set
to NULL to use row labels of datExpr.

addGuide logical: should vertical "guide lines" be added to the dendrogram plot? The
lines make it easier to identify color codes with individual samples.

86 plotClusterTreeSamples

guideAll logical: add a guide line for every sample? Only effective for addGuide set
TRUE.

guideCount number of guide lines to be plotted. Only effective when addGuide is TRUE
and guideAll is FALSE.

guideHang fraction of the dendrogram height to leave between the top end of the guide line
and the dendrogram merge height. If the guide lines overlap with dendrogram
labels, increase guideHang to leave more space for the labels.

cex.traitLabels
character expansion factor for trait labels.

cex.dendroLabels
character expansion factor for dendrogram (sample) labels.

marAll a 4-element vector giving the bottom, left, top and right margins around the
combined plot. Note that this is not the same as setting the margins via a call to
par, because the bottom margin of the dendrogram and the top margin of the
color underneath are always zero.

saveMar logical: save margins setting before starting the plot and restore on exit?

abHeight optional specification of the height for a horizontal line in the dendrogram, see
abline.

abCol color for plotting the horizontal line.

... other graphical parameters to plot.hclust.

Details

The function generates an average linkage hierarchical clustering dendrogram (see hclust) of
samples from the given expression data, using Eclidean distance of samples. The dendrogram is
plotted together with color annotation for the samples.

The trait y must be numeric. If y is integer, the colors will correspond to values. If y is continouos,
it will be dichotomized to two classes, below and above median.

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

See Also

dist, hclust, plotDendroAndColors

plotColorUnderTree 87

plotColorUnderTree Plot color rows under a dendrogram

Description

Plot color rows encoding information about objects in a clustering dendrogram, usually below the
dendrogram.

Usage

plotColorUnderTree(dendro, colors, rowLabels = NULL, cex.rowLabels = 1, ...)

Arguments

dendro A dendrogram such as returned by hclust.

colors Coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving one
color per object. Each column will be plotted as a horizontal row of colors under
the dendrogram.

rowLabels Labels for the colorings given in colors. The labels will be printed to the
left of the color rows in the plot. If the argument is given, it must be a vector of
length equal to the number of columns in colors. If not given, names(colors)
will be used if available. If not, sequential numbers starting from 1 will be used.

cex.rowLabels
Font size scale factor for the row labels. See par.

... Other parameters to be passed on to the plotting method (such as main for the
main title etc).

Details

It is often useful to plot dendrograms of objects together with additional information about the
objects, for example module assignment (by color) that was obtained by cutting a hierarchical den-
drogram or external color-coded measures such as gene significance. This function provides a way
to do so. The calling code should section the screen into two (or more) parts, plot the dendrogram
(via plot(hclust)) in the upper section and use this function to plot color annotation in the
order corresponding to the dendrogram in the lower section.

Value

None.

Note

This function is identical to the function plotHclustColors in package moduleColor.

Author(s)

Steve Horvath 〈SHorvath@mednet.ucla.edu〉 and Peter Langfelder 〈Peter.Langfelder@gmail.com〉

88 plotDendroAndColors

See Also

cutreeDynamic for module detection in a dendrogram;

plotDendroAndColors for automated plotting of dendrograms and colors in one step.

plotDendroAndColors
Dendrogram plot with color annotation of objects

Description

This function plots a hierarchical clustering dendrogram and color annotation(s) of objects in the
dendrogram underneath.

Usage

plotDendroAndColors(
dendro,
colors,
groupLabels = NULL,
setLayout = TRUE,
autoColorHeight = TRUE,
colorHeight = 0.3,
dendroLabels = NULL,
addGuide = FALSE, guideAll = FALSE,
guideCount = 50, guideHang = 0.2,
cex.colorLabels = 0.8, cex.dendroLabels = 0.9,
marAll = c(1, 5, 3, 1), saveMar = TRUE,
abHeight = NULL, abCol = "red", ...)

Arguments

dendro a hierarchical clustering dendrogram such as one produced by hclust.

colors Coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving one
color per object. Each column will be plotted as a horizontal row of colors under
the dendrogram.

groupLabels Labels for the colorings given in colors. The labels will be printed to the
left of the color rows in the plot. If the argument is given, it must be a vector of
length equal to the number of columns in colors. If not given, names(colors)
will be used if available. If not, sequential numbers starting from 1 will be used.

setLayout logical: should the plotting device be partitioned into a standard layout? If
FALSE, the user is responsible for partitioning. The function expects two re-
gions of the same width, the first one immediately above the second one.

autoColorHeight
logical: should the height of the color area below the dendrogram be automati-
cally adjusted for the number of traits? Only effective if setLayout is TRUE.

colorHeight Specifies the height of the color area under dendrogram as a fraction of the
height of the dendrogram area. Only effective when autoColorHeight
above is FALSE.

plotDendroAndColors 89

dendroLabels dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set
to NULL to use row labels of datExpr.

addGuide logical: should vertical "guide lines" be added to the dendrogram plot? The
lines make it easier to identify color codes with individual samples.

guideAll logical: add a guide line for every sample? Only effective for addGuide set
TRUE.

guideCount number of guide lines to be plotted. Only effective when addGuide is TRUE
and guideAll is FALSE.

guideHang fraction of the dendrogram height to leave between the top end of the guide line
and the dendrogram merge height. If the guide lines overlap with dendrogram
labels, increase guideHang to leave more space for the labels.

cex.colorLabels
character expansion factor for trait labels.

cex.dendroLabels
character expansion factor for dendrogram (sample) labels.

marAll a vector of length 4 giving the bottom, left, top and right margins of the com-
bined plot. There is no margin between the dendrogram and the color plot un-
derneath.

saveMar logical: save margins setting before starting the plot and restore on exit?

abHeight optional specification of the height for a horizontal line in the dendrogram, see
abline.

abCol color for plotting the horizontal line.

... other graphical parameters to plot.hclust.

Details

The function slits the plotting device into two regions, plots the given dendrogram in the upper
region, then plots color rows in the region below the dendrogram.

Value

None.

Author(s)

Peter Langfelder

See Also

plotColorUnderTree

90 plotEigengeneNetworks

plotEigengeneNetworks
Eigengene network plot

Description

This function plots dendrogram and eigengene representations of (consensus) eigengenes networks.
In the case of conensus eigengene networks the function also plots pairwise preservation measures
between consensus networks in different sets.

Usage

plotEigengeneNetworks(
multiME,
setLabels,
letterSubPlots = FALSE, Letters = NULL,
excludeGrey = TRUE, greyLabel = "grey",
plotDendrograms = TRUE, plotHeatmaps = TRUE,
setMargins = TRUE, marDendro = NULL, marHeatmap = NULL,
colorLabels = TRUE, signed = TRUE,
heatmapColors = NULL,
plotAdjacency = TRUE,
coloredBarplot = TRUE, barplotMeans = TRUE, barplotErrors = FALSE,
plotPreservation = "standard",
zlimPreservation = c(0, 1),
printPreservation = FALSE, cex.preservation = 0.9,
...)

Arguments

multiME either a single data frame containing the module eigengenes, or module eigen-
genes in the multi-set format (see checkSets). The multi-set format is a vec-
tor of lists, one per set. Each set must contain a component data whose rows
correspond to samples and columns to eigengenes.

setLabels A vector of character strings that label sets in multiME.
letterSubPlots

logical: should subplots be lettered?

Letters optional specification of a sequence of letters for lettering. Defaults to "ABCD"...

excludeGrey logical: should the grey module eigengene be excluded from the plots?

greyLabel label for the grey module. Usually either "grey" or the number 0.
plotDendrograms

logical: should eigengene dendrograms be plotted?

plotHeatmaps logical: should eigengene network heatmaps be plotted?

setMargins logical: should margins be set? See par.

marDendro a vector of length 4 giving the margin setting for dendrogram plots. See par.
If setMargins is TRUE and \marDendro is not given, the function will
provide reasonable default values.

plotEigengeneNetworks 91

marHeatmap a vector of length 4 giving the margin setting for heatmap plots. See par.
If setMargins is TRUE and \marDendro is not given, the function will
provide reasonable default values.

colorLabels logical: should module eigengene names be interpreted as color names and the
colors used to label heatmap plots and barplots?

signed logical: should eigengene networks be constructed as signed?
heatmapColors

color palette for heatmaps. Defaults to heat.colorswhen signed is FALSE,
and to redWhiteGreen when signed is TRUE.

plotAdjacency
logical: should module eigengene heatmaps plot adjacency (ranging from 0 to
1), or correlation (ranging from -1 to 1)?

coloredBarplot
logical: should the barplot of eigengene adjacency preservation distinguish indi-
vidual contributions by color? This is possible only if colorLabels is TRUE
and module eigengene names encode valid colors.

barplotMeans logical: plot mean preservation in the barplot? This option effectively rescales
the preservation by the number of eigengenes in the network. If means are
plotted, the barplot is not colored.

barplotErrors
logical: should standard errors of the mean preservation be plotted?

plotPreservation
a character string specifying which type of preservation measure to plot. Al-
lowed values are (unique abbreviations of) "standard", "hyperbolic",
"both".

zlimPreservation
a vector of length 2 giving the value limits for the preservation heatmaps.

printPreservation
logical: should preservation values be printed within the heatmap?

cex.preservation
character expansion factor for preservation display.

... other graphical arguments to function link[fields]{image.plot}.

Details

Consensus eigengene networks consist of a fixed set of eigengenes "expressed" in several different
sets. Network connection strengths are given by eigengene correlations. This function aims to
visualize the networks as well as their similarities and differences across sets.

The function partitions the screen appropriately and plots eigengene dendrograms in the top row,
then a square matrix of plots: heatmap plots of eigengene networks in each set on the diagonal,
heatmap plots of pairwise preservation networks below the diagonal, and barplots of aggregate
network preservation of individual eigengenes above the diagonal. A preservation plot or barplot in
the row i and column j of the square matrix represents the preservation between sets i and j.

Individual eigengenes are labeled by their name in the dendrograms; in the heatmaps and barplots
they can optionally be labeled by color squares. For compatibility with other functions, the color la-
bels are encoded in the eigengene names by prefixing the color with two letters, such as "MEturquoise".

Two types of network preservation can be plotted: the "standard" is simply the difference
between adjacencies in the two compared sets. The "hyperbolic" difference de-emphasizes the
preservation of low adjacencies. When "both" is specified, standard preservation is plotted in the
lower triangle and hyperbolic in the upper triangle of each preservation heatmap.

92 plotMEpairs

If the eigengenes are labeled by color, the bars in the barplot can be split into segments representing
the contribution of each eigengene and labeled by the contribution. For example, a yellow segment
in a bar labeled by a turquoise square represents the preservation of the adjacency between the
yellow and turquoise eigengenes in the two networks compared by the barplot.

For large numbers of eigengenes and/or sets, it may be difficult to get a meaningful plot fit a standard
computer screen. In such cases we recommend using a device such as postscript or pdf where
the user can specify large dimensions; such plots can be conveniently viewed in standard pdf or
postscript viewers.

Value

None.

Author(s)

Peter Langfelder

References

For theory and applications of consensus eigengene networks, see

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

labeledHeatmap, labeledBarplot for annotated heatmaps and barplots;

hclust for hierarchical clustering and dendrogram plots

plotMEpairs Pairwise scatterplots of eigengenes

Description

The function produces a matrix of plots containing pairwise scatterplots of given eigengenes, the
distribution of their values and their pairwise correlations.

Usage

plotMEpairs(
datME,
y = NULL,
main = "Relationship between module eigengenes",
clusterMEs = TRUE,
...)

plotModuleSignificance 93

Arguments

datME a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

y optional microarray sample trait vector. Will be treated as an additional eigen-
gene.

main main title for the plot.

clusterMEs logical: should the module eigengenes be ordered by their dendrogram?

... additional graphical parameters to the function pairs

Details

The function produces an NxN matrix of plots, where N is the number of eigengenes. In the upper
traingle it plots pairwise scatterplots of module eigengenes (plus the trait y, if given). On the
diagonal it plots histograms of sample values for each eigengene. Below the diagonal, it displays
the pairwise correlations of the eigengenes.

Value

None.

Author(s)

Steve Horvath

See Also

pairs

plotModuleSignificance
Barplot of module significance

Description

Plot a barplot of gene significance.

Usage

plotModuleSignificance(
geneSignificance,
colors,
boxplot = FALSE,
main = "Gene significance across modules,",
ylab = "Gene Significance", ...)

94 plotNetworkHeatmap

Arguments

geneSignificance
a numeric vector giving gene significances.

colors a character vector specifying module assignment for the genes whose signifi-
cance is given in geneSignificance . The modules should be labeled by
colors.

boxplot logical: should a boxplot be produced instead of a barplot?

main main title for the plot.

ylab y axis label for the plot.

... other graphical parameters to plot.

Details

Given individual gene significances and their module assigment, the function calculates the module
significance for each module as the average gene significance of the genes within the module. The
result is plotted in a barplot or boxplot form. Each bar or box is labeled by the corresponding
module color.

Value

None.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

See Also

barplot, boxplot

plotNetworkHeatmap Network heatmap plot

Description

Network heatmap plot.

plotNetworkHeatmap 95

Usage

plotNetworkHeatmap(
datExpr,
plotGenes,
useTOM = TRUE,
power = 6,
networkType = "unsigned",
main = "Heatmap of the network")

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

plotGenes a character vector giving the names of genes to be included in the plot. The
names will be matched against names(datExpr).

useTOM logical: should TOM be plotted (TRUE), or correlation-based adjacency (FALSE)?

power soft-thresholding power for network construction.

networkType a character string giving the newtork type. Recognized values are (unique ab-
breviations of) "unsigned", "signed", and "signed hybrid".

main main title for the plot.

Details

The function constructs a network from the given expression data (selected by plotGenes) us-
ing the soft-thresholding procedure, optionally calculates Topological Overlap (TOM) and plots a
heatmap of the network.

Note that all network calculations are done in one block and may fail due to memory allocation
issues for large numbers of genes.

Value

None.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency, TOMsimilarity

96 preservationNetworkConnectivity

preservationNetworkConnectivity
Network preservation calculations

Description

This function calculates several measures of gene network preservation. Given gene expression data
in several individual data sets, it calculates the individual adjacency matrices, forms the preserva-
tion network and finally forms several summary measures of adjacency preservation for each node
(gene) in the network.

Usage

preservationNetworkConnectivity(
multiExpr,
useSets = NULL, useGenes = NULL,
corFnc = "cor", corOptions = "use='p'",
networkType = "unsigned",
power = 6,
sampleLinks = NULL, nLinks = 5000,
blockSize = 1000,
setSeed = 12345,
weightPower = 2,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

useSets optional specification of sets to be used for the preservation calculation. Defaults
to using all sets.

useGenes optional specification of genes to be used for the preservation calculation. De-
faults to all genes.

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

networkType a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

power soft thresholding power for network construction. Should be a number greater
than 1.

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

preservationNetworkConnectivity 97

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored upon exit.

weightPower power with which higher adjacencies will be weighted in weighted means

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The preservation network is formed from adjacencies of compared sets. For ’complete’ preserva-
tions, all given sets are compared at once; for ’pairwise’ preservations, the sets are compared in
pairs. Unweighted preservations are simple mean preservations for each node; their weighted coun-
terparts are weighted averages in which a preservation of adjacencies A(1)

ij and A(2)
ij of nodes i, j

between sets 1 and 2 is weighted by [(A(1)
ij +A

(2)
ij)/2]weightPower. The hyperbolic preservation

is based on tanh[(max − min)/(max + min)2], where max and min are the componentwise
maximum and minimum of the compared adjacencies, respectively.

Value

A list with the following components:

pairwise a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise preservation of the adjacencies connecting the gene to
all other genes.

complete a vector with one entry for each input gene containing the complete mean preser-
vation of the adjacencies connecting the gene to all other genes.

pairwiseWeighted
a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise weighted preservation of the adjacencies connecting
the gene to all other genes.

completeWeighted
a vector with one entry for each input gene containing the complete weighted
mean preservation of the adjacencies connecting the gene to all other genes.

pairwiseHyperbolic
a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise hyperbolic preservation of the adjacencies connecting
the gene to all other genes.

completeHyperbolic
a vector with one entry for each input gene containing the complete mean hy-
perbolic preservation of the adjacencies connecting the gene to all other genes.

pairwiseWeightedHyperbolic
a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise weighted hyperbolic preservation of the adjacencies
connecting the gene to all other genes.

completeWeightedHyperbolic
a vector with one entry for each input gene containing the complete weighted
hyperbolic mean preservation of the adjacencies connecting the gene to all other
genes.

98 projectiveKMeans

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

adjacency for calculation of adjacency;

projectiveKMeans Projective K-means (pre-)clustering of expression data

Description

Implementation of a variant of K-means clustering for expression data.

Usage

projectiveKMeans(
datExpr,
preferredSize = 5000,
nCenters = ceiling(10 * ncol(datExpr)/preferredSize),
sizePenaltyPower = 4,
networkType = "unsigned",
randomSeed = 54321,
checkData = TRUE,
maxIterations = 1000,
verbose = 0, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

preferredSize
preferred maximum size of clusters.

nCenters number of initial clusters.
sizePenaltyPower

parameter specifying how severe is the penalty for clusters that exceed preferredSize.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

checkData logical: should data be checked for genes with zero variance and genes and
samples with excessive numbers of missing samples? Bad samples are ignored;
returned cluster assignment for bad genes will be NA.

maxIterations
maximum iterations to be attempted.

propVarExplained 99

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into
smaller blocks that can be handled using standard WGCNA techniques.

This function implements a variant of K-means clustering that is suitable for co-expression anal-
ysis. Cluster centers are defined by the first principal component, and distances by correlation
(more precisely, 1-correlation). The distance between a gene and a cluster is multiplied by a factor
of max(clusterSize/preferredSize, 1)sizePenaltyPower, thus penalizing clusters whose size ex-
ceeds preferredSize. The function starts with randomly generated cluster assignment (hence
the need to set the random seed for repeatability) and executes interations of calculating new cen-
ters and reassigning genes to nearest center until the clustering becomes stable. Before returning,
nearby clusters are iteratively combined if their combined size is below preferredSize.

The standard principal component calculation via the function svd fails from time to time (likely a
convergence problem of the underlying lapack functions). Such errors are trapped and the principal
component is approximated by a weighted average of expression profiles in the cluster. If verbose
is set above 2, an informational message is printed whenever this approximation is used.

Value

A list with the following components:

clusters a numerical vector with one component per input gene, giving the cluster num-
ber in which the gene is assigned.

centers cluster centers, that is their first principal components.

Author(s)

Peter Langfelder

propVarExplained Proportion of variance explained by eigengenes.

Description

This function calculates the proportion of variance of genes in each module explained by the re-
spective module eigengene.

Usage

propVarExplained(datExpr, colors, MEs, corFnc = "cor", corOptions = "use = 'p'")

100 randIndex

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed and will be ignored.

colors a vector giving module assignment for genes given in datExpr. Unique values
should correspond to the names of the eigengenes in MEs.

MEs a data frame of module eigengenes in which each column is an eigengene and
each row corresponds to a sample.

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

Details

For compatibility with other functions, entries in color are matched to a substring of names(MEs)
starting at position 3. For example, the entry "turquoise" in colors will be matched to the
eigengene named "MEturquoise". The first two characters of the eigengene name are ignored
and can be arbitrary.

Value

A vector with one entry per eigengene containing the proportion of variance of the module explained
by the eigengene.

Author(s)

Peter Langfelder

See Also

moduleEigengenes

randIndex function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

randIndex(tab, adjust = TRUE)

Arguments

tab Describe tab here

adjust Describe adjust here

Details

If necessary, more details than the description above

0.6. WARNING 101

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.6 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function(tab, adjust=TRUE)
{
a <- 0; b <- 0; c <- 0; d <- 0; nn <- 0
m <- nrow(tab);
n <- ncol(tab);
for (i in 1:m) {
c<-0
for(j in 1:n) {
a <- a+.choosenew(tab[i,j],2)
nj <- sum(tab[,j])
c <- c+.choosenew(nj,2)

}
ni <- sum(tab[i,])
b <- b+.choosenew(ni,2)

102 recutBlockwiseTrees

nn <- nn+ni
}
if(adjust==T) {
d <- .choosenew(nn,2)
adrand <- (a-(b*c)/d)/(0.5*(b+c)-(b*c)/d)
adrand

} else {
b <- b-a
c <- c-a
d <- .choosenew(nn,2)-a-b-c
rand <- (a+d)/(a+b+c+d)
rand

}
}

recutBlockwiseTrees
Repeat blockwise module detection from pre-calculated data

Description

Given consensus networks constructed for example using blockwiseModules, this function (re-
)detects modules in them by branch cutting of the corresponding dendrograms. If repeated branch
cuts of the same gene network dendrograms are desired, this function can save substantial time by
re-using already calculated networks and dendrograms.

Usage

recutBlockwiseTrees(
datExpr,
goodSamples, goodGenes,
blocks,
TOMFiles,
dendrograms,
corType = "pearson",
networkType = "unsigned",
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = min(20, ncol(datExpr)/2),
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
pamStage = TRUE,
minKMEtoJoin =0.7,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.3,
reassignThreshold = 1e-6,
mergeCutHeight = 0.15, impute = TRUE,
trapErrors = FALSE, numericLabels = FALSE,
verbose = 0, indent = 0)

recutBlockwiseTrees 103

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

goodSamples a logical vector specifying which samples are considered "good" for the analy-
sis. See goodSamplesGenes.

goodGenes a logical vector with length equal number of genes in multiExpr that specifies
which genes are considered "good" for the analysis. See goodSamplesGenes.

blocks specification of blocks in which hierarchical clustering and module detection
should be performed. A numeric vector with one entry per gene of multiExpr
giving the number of the block to which the corresponding gene belongs.

TOMFiles a vector of character strings specifying file names in which the block-wise topo-
logical overlaps are saved.

dendrograms a list of length equal the number of blocks, in which each component is a hier-
archical clustering dendrograms of the genes that belong to the block.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and
bidweight midcorrelation, respectively. Missing values are handled using the
pariwise.complete.obs option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight
dendrogram cut height for module detection. See cutreeDynamic for more
details.

minModuleSize
minimum module size for module detection. See cutreeDynamic for more
details.

maxCoreScatter
maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more de-
tails.

maxAbsCoreScatter
maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for
more details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

minKMEtoJoin a number between 0 and 1. Genes with eigengene connectivity higher than
minKMEtoJoin are automatically assigned to their closest module.

104 recutBlockwiseTrees

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is dis-
banded (its genes are unlabeled and returned to the pool of genes waiting for
mofule detection).

minCoreKMESize
see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThreshold
p-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight
dendrogram cut height for module merging.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

numericLabels
logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

For details on blockwise module detection, see blockwiseModules. This function implements
the module detection subset of the functionality of blockwiseModules; network construction
and clustering must be performed in advance. The primary use of this function is to experiment with
module detection settings without having to re-execute long network and clustering calculations
whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseModules.
Working block by block, modules are identified in the dendrogram by the Dynamic Hybrid Tree Cut
algorithm. Found modules are trimmed of genes whose correlation with module eigengene (KME)
is less than minKMEtoStay. Modules in which fewer than minCoreKMESize genes have KME
higher than minCoreKME are disbanded, i.e., their constituent genes are pronounced unassigned.
Conversely, any unassigned genes with KME higher than minKMEtoJoin are automatically as-
signed to their nearest module.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS, the gene is
re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

recutConsensusTrees 105

Value

A list with the following components:

colors a vector of color or numeric module labels for all genes.
unmergedColors

a vector of color or numeric module labels for all genes before module merging.

MEs a data frame containing module eigengenes of the found modules (given by
colors).

MEsOK logical indicating whether the module eigengenes were calculated without er-
rors.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

blockwiseModules for full module calculation;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

recutConsensusTrees
Repeat blockwise consensus module detection from pre-calculated
data

Description

Given consensus networks constructed for example using blockwiseConsensusModules,
this function (re-)detects modules in them by branch cutting of the corresponding dendrograms.
If repeated branch cuts of the same gene network dendrograms are desired, this function can save
substantial time by re-using already calculated networks and dendrograms.

Usage

recutConsensusTrees(
multiExpr,
goodSamples, goodGenes,
blocks,
TOMFiles,
dendrograms,
corType = "pearson",
networkType = "unsigned",
deepSplit = 2,

106 recutConsensusTrees

detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
pamStage = TRUE,
minKMEtoJoin =0.7,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.2,
reassignThresholdPS = 1e-4,
mergeCutHeight = 0.15,
impute = TRUE,
trapErrors = FALSE,
numericLabels = FALSE,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

goodSamples a list with one component per set. Each component is a logical vector specifying
which samples are considered "good" for the analysis. See goodSamplesGenesMS.

goodGenes a logical vector with length equal number of genes in multiExpr that specifies
which genes are considered "good" for the analysis. See goodSamplesGenesMS.

blocks specification of blocks in which hierarchical clustering and module detection
should be performed. A numeric vector with one entry per gene of multiExpr
giving the number of the block to which the corresponding gene belongs.

TOMFiles a vector of character strings specifying file names in which the block-wise topo-
logical overlaps are saved.

dendrograms a list of length equal the number of blocks, in which each component is a hier-
archical clustering dendrograms of the genes that belong to the block.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and
bidweight midcorrelation, respectively. Missing values are handled using the
pariwise.complete.obs option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency. Note that while no new
networks are computed in this function, this parameter affects the interpretation
of correlations in this function.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight
dendrogram cut height for module detection. See cutreeDynamic for more
details.

minModuleSize
minimum module size for module detection. See cutreeDynamic for more
details.

checkMinModuleSize
logical: should sanity checks be performed on minModuleSize?

recutConsensusTrees 107

maxCoreScatter
maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more de-
tails.

maxAbsCoreScatter
maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for
more details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

minKMEtoJoin a number between 0 and 1. Genes with eigengene connectivity higher than
minKMEtoJoin are automatically assigned to their closest module.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is dis-
banded (its genes are unlabeled and returned to the pool of genes waiting for
mofule detection).

minCoreKMESize
see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThresholdPS
per-set p-value ratio threshold for reassigning genes between modules. See De-
tails.

mergeCutHeight
dendrogram cut height for module merging.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?
numericLabels

logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

For details on blockwise consensus module detection, see blockwiseConsensusModules.
This function implements the module detection subset of the functionality of blockwiseConsensusModules;
network construction and clustering must be performed in advance. The primary use of this func-
tion is to experiment with module detection settings without having to re-execute long network and
clustering calculations whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseConsensusModules.
Working block by block, modules are identified in the dendrograms by the Dynamic Hybrid tree cut.

108 recutConsensusTrees

Found modules are trimmed of genes whose correlation with module eigengene (KME) is less than
minKMEtoStay in any of the sets. Modules in which fewer than minCoreKMESize genes have
KME higher than minCoreKME (in all sets) are disbanded, i.e., their constituent genes are pro-
nounced unassigned. Conversely, any unassigned genes with KME higher than minKMEtoJoin
in all sets are automatically assigned to their nearest module.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS (in every set),
the gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

Value

A list with the following components:

colors module assignment of all input genes. A vector containing either character
strings with module colors (if input numericLabels was unset) or numeric
module labels (if numericLabels was set to TRUE). The color "grey" and
the numeric label 0 are reserved for unassigned genes.

unmergedColors
module colors or numeric labels before the module merging step.

multiMEs module eigengenes corresponding to the modules returned in colors, in multi-
set format. A vector of lists, one per set, containing eigengenes, proportion of
variance explained and other information. See multiSetMEs for a detailed
description.

Note

Basic sanity checks are performed on given arguments, but it is left to the user’s responsibility to
provide valid input.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

blockwiseConsensusModules for the full blockwise modules calculation. Parts of its output
are natural input for this function.

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

redWhiteGreen 109

redWhiteGreen Red-white-green color sequence

Description

Generate a red-white-green color sequence of a given length.

Usage

redWhiteGreen(n, gamma = 1)

Arguments

n number of colors to be returned

gamma color correction power

Details

The function returns a color vector that starts with pure green, gradually turns into white and then
to red. The power \gamma can be used to control the behaviour of the quarter- and three quarter-
values (between red and white, and white and green, respectively). Higher powers will make the
mid-colors more white, while lower powers will make the colors more saturated, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

Examples

par(mfrow = c(3, 1))
displayColors(redWhiteGreen(50));
displayColors(redWhiteGreen(50, 3));
displayColors(redWhiteGreen(50, 0.5));

relativeCorPredictionSuccess
function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

relativeCorPredictionSuccess(corPredictionNew, corPredictionStandard, corTestSet, topNumber = 100)

110 relativeCorPredictionSuccess

Arguments

corPredictionNew
Describe corPredictionNew here

corPredictionStandard
Describe corPredictionStandard here

corTestSet Describe corTestSet here

topNumber Describe topNumber here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.7 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

removeGreyME 111

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (corPredictionNew, corPredictionStandard, corTestSet,

topNumber = 100)
{

nPredictors = dim(as.matrix(corPredictionNew))[[2]]
nGenes = dim(as.matrix(corPredictionNew))[[1]]
if (length(as.numeric(corTestSet)) != nGenes)

stop("non-compatible dimensions of 'corPrediction' and 'corTestSet'.")
if (length(as.numeric(corTestSet)) != length(corPredictionStandard))

stop("non-compatible dimensions of 'corTestSet' and 'corPredictionStandard'.")
kruskalp = matrix(NA, nrow = length(topNumber), ncol = nPredictors)
for (i in c(1:nPredictors)) {

rankhighNew = rank(-as.matrix(corPredictionNew)[, i],
ties.method = "first")

ranklowNew = rank(as.matrix(corPredictionNew)[, i], ties.method = "first")
for (j in c(1:length(topNumber))) {

highCorNew = as.numeric(corTestSet[rankhighNew <=
topNumber[j]])

lowCorNew = as.numeric(corTestSet[ranklowNew <= topNumber[j]])
highCorStandard = as.numeric(corTestSet[rank(-as.numeric(corPredictionStandard),

ties.method = "first") <= topNumber[j]])
lowCorStandard = as.numeric(corTestSet[rank(as.numeric(corPredictionStandard),

ties.method = "first") <= topNumber[j]])
signedCorNew = c(highCorNew, -lowCorNew)
signedCorStandard = c(highCorStandard, -lowCorStandard)
x1 = c(signedCorNew, signedCorStandard)
Grouping = rep(c(2, 1), c(length(signedCorNew), length(signedCorStandard)))
sign1 = sign(cor(Grouping, x1, use = "p"))
if (sign1 == 0)

sign1 = 1
kruskalp[j, i] = kruskal.test(x = x1, g = Grouping)$p.value *

sign1
}

}
kruskalp[kruskalp < 0] = 1
kruskalp = data.frame(kruskalp)
dimnames(kruskalp)[[2]] = paste(names(data.frame(corPredictionNew)),

".kruskalP", sep = "")
kruskalp = data.frame(topNumber = topNumber, kruskalp)
kruskalp

}

removeGreyME Removes the grey eigengene from a given collection of eigengenes.

Description

Given module eigengenes either in a single data frame or in a multi-set format, removes the grey
eigengenes from each set. If the grey eigengenes are not found, a warning is issued.

112 scaleFreePlot

Usage

removeGreyME(MEs, greyMEName = paste(moduleColor.getMEprefix(), "grey", sep=""))

Arguments

MEs Module eigengenes, either in a single data frame (typicaly for a single set), or in
a multi-set format. See checkSets for a description of the multi-set format.

greyMEName Name of the module eigengene (in each corresponding data frame) that corre-
sponds to the grey color. This will typically be "PCgrey" or "MEgrey". If the
module eigengenes were calculated using standard functions in this library, the
default should work.

Value

Module eigengenes in the same format as input (either a single data frame or a vector of lists) with
the grey eigengene removed.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

scaleFreePlot Visual check of scale-free topology

Description

A simple visula check of scale-free network ropology.

Usage

scaleFreePlot(connectivity, nBreaks = 10, truncated = FALSE, removeFirst = FALSE, main = "", ...)

Arguments

connectivity vector containing network connectivities.

nBreaks number of breaks in the connectivity dendrogram.

truncated logical: should a truncated exponential fit be calculated and plotted in addition
to the linear one?

removeFirst logical: should the first bin be removed from the fit?

main main title for the plot.

... other graphical parameter to the plot function.

Details

The function plots a log-log plot of a histogram of the given connectivities, and fits a linear
model plus optionally a truncated exponential model. The R2 of the fit can be considered an index
of the scale freedom of the network topology.

setCorrelationPreservation 113

Value

None.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

softConnectivity for connectivity calculation in weigheted networks.

setCorrelationPreservation
Summary correlation preservation measure

Description

Given consensus eigengenes, the function calculates the average correlation preservation pair-wise
for all pairs of sets.

Usage

setCorrelationPreservation(multiME, setLabels, excludeGrey = TRUE, greyLabel = "grey", method = "absolute")

Arguments

multiME consensus module eigengenes in a multi-set format. A vector of lists with one
list corresponding to each set. Each list must contain a component data that is
a data frame whose columns are consensus module eigengenes.

setLabels names to be used for the sets represented in multiME.

excludeGrey logical: exclude the ’grey’ eigengene from preservation measure?

greyLabel module label corresponding to the ’grey’ module. Usually this will be the char-
acter string "grey" if the labels are colors, and the number 0 if the labels are
numeric.

method character string giving the correlation preservation measure to use. Recognized
values are (unique abbreviations of) "absolute", "hyperbolic".

Details

For each pair of sets, the function calculates the average preservation of correlation among the
eigengenes. Two preservation measures are available, the abosolute preservation (high if the two
correlations are similar and low if they are different), and the hyperbolically scaled preservation,
which de-emphasizes preservation of low correlation values.

114 sigmoidAdjacencyFunction

Value

A data frame with each row and column corresponding to a set given in multiME, containing
the pairwise average correlation preservation values. Names and rownames are set to entries of
setLabels.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

multiSetMEs for module eigengene calculation;

plotEigengeneNetworks for eigengene network visualization.

sigmoidAdjacencyFunction
Sigmoid-type adacency function.

Description

Sigmoid-type function that converts a similarity to a weighted network adjacency.

Usage

sigmoidAdjacencyFunction(ss, mu = 0.8, alpha = 20)

Arguments

ss similarity, a number between 0 and 1. Can be given as a scalar, vector or a
matrix.

mu shift parameter.

alpha slope parameter.

Details

The sigmoid adjacency function is defined as 1/(1 + exp[−α(ss− µ)]).

Value

Adjacencies returned in the same form as the input ss

Author(s)

Steve Horvath

signedKME 115

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

signedKME Signed eigengene-based connectivity

Description

Calculation of (signed) eigengene-based connectivity, also known as module membership.

Usage

signedKME(datExpr, datME, outputColumnName = "kME")

Arguments

datExpr a data frame containing the gene expression data. Rows correspond to samples
and columns to genes. Missing values are allowed and will be ignored.

datME a data frame containing module eigengenes. Rows correspond to samples and
columns to module eigengenes.

outputColumnName
a character string specifying the prefix of column names of the output.

Details

Signed eigengene-based connectivity of a gene in a module is defined as the correlation of the gene
with the corresponding module eigengene. The samples in datExpr and datME must be the
same.

Value

A data frame in which rows correspond to input genes and columns to module eigengenes, giving
the signed eigengene-based connectivity of each gene with respect to each eigengene.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

116 simulateDatExpr5Modules

signumAdjacencyFunction
Hard-thresholding adjacency function

Description

This function transforms correlations or other measures of similarity into an unweighted network
adjacency.

Usage

signumAdjacencyFunction(corMat, threshold)

Arguments

corMat a matrix of correlations or other measures of similarity.

threshold threshold for connecting nodes: all nodes whose corMat is above the threshold
will be connected in the resulting network.

Value

An unweighted adjacency matrix of the same dimensions as the input corMat.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency for soft-thresholding and creating weighted networks.

simulateDatExpr5Modules
Simplified simulation of expression data

Description

This function provides a simplified interface to the expression data simulation, at the cost of con-
siderably less flexibility.

simulateDatExpr5Modules 117

Usage

simulateDatExpr5Modules(
nGenes = 2000,
colorLabels = c("turquoise", "blue", "brown", "yellow", "green"),
simulateProportions = c(0.1, 0.08, 0.06, 0.04, 0.02),
MEturquoise, MEblue, MEbrown, MEyellow, MEgreen,
SDnoise = 1, backgroundCor = 0.3)

Arguments

nGenes total number of genes to be simulated.

colorLabels labels for simulated modules.
simulateProportions

a vector of length 5 giving proportions of the total number of genes to be placed
in each individual module. The entries must be positive and sum to at most 1. If
the sum is less than 1, the leftover genes will be simulated outside of modules.

MEturquoise seed module eigengene for the first module.

MEblue seed module eigengene for the second module.

MEbrown seed module eigengene for the third module.

MEyellow seed module eigengene for the fourth module.

MEgreen seed module eigengene for the fifth module.

SDnoise level of noise to be added to the simulated expressions.
backgroundCor

backgrond correlation. If non-zero, a component will be added to all genes such
that the average correlation of otherwise unrelated genes will be backgroundCor.

Details

Roughly one-third of the genes are simulated with a negative correlation to their seed eigengene.
See the functions simulateModule and simulateDatExpr for more details.

Value

A list with the following components:

datExpr the simulated expression data in a data frame, with rows corresponding to sam-
ples and columns to genes.

truemodule a vector with one entry per gene containing the simulated module membership.

datME a data frame containing a copy of the input module eigengenes.

Author(s)

Steve Horvath and Peter Langfelder

See Also

simulateModule for simulation of individual modules;

simulateDatExpr for a more comprehensive data simulation interface.

118 simulateDatExpr

simulateDatExpr Simulation of expression data

Description

Simulation of expression data with a customizable modular structure and several different types of
noise.

Usage

simulateDatExpr(
eigengenes,
nGenes,
modProportions,
minCor = 0.3,
maxCor = 1,
corPower = 1,
signed = FALSE,
propNegativeCor = 0.3,
backgroundNoise = 0.1,
leaveOut = NULL,
nSubmoduleLayers = 0,
nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10,
averageExprInSubmodule = 0.2,
submoduleSpacing = 2,
verbose = 1, indent = 0)

Arguments

eigengenes a data frame containing the seed eigengenes for the simulated modules. Rows
correspond to samples and columns to modules.

nGenes total number of genes to be simulated.
modProportions

a numeric vector with length equal the number of eigengenes in eigengenes
plus one, containing fractions of the total number of genes to be put into each of
the modules and into the "grey module", which means genes not related to any
of the modules. See details.

minCor minimum correlation of module genes with the corresponding eigengene. See
details.

maxCor maximum correlation of module genes with the corresponding eigengene. See
details.

corPower controls the dropoff of gene-eigengene correlation. See details.
signed logical: should the genes be simulated as belonging to a signed network? If

TRUE, all genes will be simulated to have positive correlation with the eigen-
gene. If FALSE, a proportion given by propNegativeCor will be simulated
with negative correlations of the same absolute values.

propNegativeCor
proportion of genes to be simulated with negative gene-eigengene correlations.
Only effective if signed is FALSE.

simulateDatExpr 119

backgroundNoise
amount of background noise to be added to the simulated expression data.

leaveOut optional specification of modules that should be left out of the simulation, that
is their genes will be simulated as unrelated ("grey"). This can be useful when
simulating several sets, in some which a module is present while in others it is
absent.

nSubmoduleLayers
number of layers of ordered submodules to be added. See details.

nScatteredModuleLayers
number of layers of scattered submodules to be added. See details.

averageNGenesInSubmodule
average number of genes in a submodule. See details.

averageExprInSubmodule
average strength of submodule expression vectors.

submoduleSpacing
a number giving submodule spacing: this multiple of the submodule size will
lie between the submodule and the next one.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Given eigengenes can be unrelated or they can exhibit non-trivial correlations. Each module
is simulated separately from others. The expression profiles are chosen such that their correlations
with the eigengene run from just below maxCor to minCor (hence minCor must be between 0 and
1, not including the bounds). The parameter corPower can be chosen to control the behaviour
of the simulated correlation with the gene index; values higher than 1 will result in the correlation
approaching minCor faster and lower than 1 slower.

Numbers of genes in each module are specified (as fractions of the total number of genes nGenes)
by \modProportions. The last entry in \modProportions corresponds to the genes that
will be simulated as unrelated to anything else ("grey" genes). The proportion must add up to 1 or
less. If the sum is less than one, the remaining genes will be partitioned into groups and simulated
to be "close" to the proper modules, that is with small but non-zero correlations (between minCor
and 0) with the module eigengene.

If \signed is set FALSE, the correlation for some of the module genes is chosen negative (but
the absolute values remain the same as they would be for positively correlated genes). To ensure
consistency for simulations of multiple sets, the indices of the negatively correlated genes are fixed
and distributed evenly.

In addition to the primary module structure, a secondary structure can be optionally simulated.
Modules in the secondary structure have sizes chosen from an exponential distribution with mean
equal averageNGenesInSubmodule. Expression vectors simulated in the secondary structure
are simulated with expected standard deviation chosen from an exponential distribution with mean
equal averageExprInSubmodule; the higher this coefficient, the more pronounced will the
submodules be in the main modules. The secondary structure can be simulated in several layers;
their number is given by SubmoduleLayers. Genes in these submodules are ordered in the same
order as in the main modules.

In addition to the ordered submodule structure, a scattered submodule structure can be simulated as
well. This structure can be viewed as noise that tends to correlate random groups of genes. The size

120 simulateEigengeneNetwork

and effect parameters are the same as for the ordered submodules, and the number of layers added
is controlled by nScatteredModuleLayers.

Value

A list with the following components:

datExpr simulated expression data in a data frame whose columns correspond genes and
rows to samples.

setLabels simulated module assignment. Module labels are numeric, starting from 1.
Genes simulated to be outside of proper modules have label 0. Modules that
are left out (specified in leaveOut) are indicated as 0 here.

allLabels simulated module assignment. Genes that belong to leftout modules (specified
in leaveOut) are indicated by their would-be assignment here.

labelOrder a vector specifying the order in which labels correspond to the given eigen-
genes, that is labelOrder[1] is the label assigned to module whose seed is
eigengenes[, 1] etc.

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to
the article

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54.

The material is posted at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork/SupplementSimulations.pdf.

See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;

simulateModule for simulations of individual modules;

simulateDatExpr5Modules for a simplified interface to expression simulations;

simulateMultiExpr for a simulation of several related data sets.

simulateEigengeneNetwork
Simulate eigengene network from a causal model

Description

Simulates a set of eigengenes (vectors) from a given set of causal anchors and a causal matrix.

Usage

simulateEigengeneNetwork(causeMat, anchorIndex, anchorVectors, noise = 1, verbose = 0, indent = 0)

simulateModule 121

Arguments

causeMat causal matrix. The entry [i,j] is the influence (path coefficient) of vector j
on vector i.

anchorIndex specifies the indices of the anchor vectors.
anchorVectors

a matrix giving the actual anchor vectors as columns. Their number must equal
the length of anchorIndex.

noise standard deviation of the noise added to each simulated vector.

verbose level of verbosity. 0 means silent.

indent indentation for diagnostic messages. Zero means no indentation; each unit adds
two spaces.

Details

The algorithm starts with the anchor vectors and iteratively generates the rest from the path coeffi-
cients given in the matrix causeMat.

Value

A list with the following components:

eigengenes generated eigengenes.

causeMat a copy of the input causal matrix

levels useful for debugging. A vector with one entry for each eigengene giving the
number of generations of parents of the eigengene. Anchors have level 0, their
direct causal children have level 1 etc.

anchorIndex a copy of the input anchorIndex.

Author(s)

Peter Langfelder

simulateModule Simulate a gene co-expression module

Description

Simulation of a single gene co-expression module.

Usage

simulateModule(
ME,
nGenes,
nNearGenes = 0,
minCor = 0.3, maxCor = 1, corPower = 1,
signed = FALSE, propNegativeCor = 0.3,
verbose = 0, indent = 0)

122 simulateModule

Arguments

ME seed module eigengene.

nGenes number of genes in the module to be simulated. Must be non-zero.

nNearGenes number of genes to be simulated with low correlation with the seed eigengene.

minCor minimum correlation of module genes with the eigengene. See details.

maxCor maximum correlation of module genes with the eigengene. See details.

corPower controls the dropoff of gene-eigengene correlation. See details.

signed logical: should the genes be simulated as belonging to a signed network? If
TRUE, all genes will be simulated to have positive correlation with the eigen-
gene. If FALSE, a proportion given by propNegativeCor will be simulated
with negative correlations of the same absolute values.

propNegativeCor
proportion of genes to be simulated with negative gene-eigengene correlations.
Only effective if signed is FALSE.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Module genes are simulated around the eigengene by choosing them such that their (expected)
correlations with the seed eigengene decrease progressively from (just below) maxCor to minCor.
The genes are otherwise independent from one another. The variable corPower determines how
fast the correlation drops towards minCor. Higher powers lead to a faster frop-off; corPower
must be above zero but need not be integer.

If signed is FALSE, the genes are simulated so as to be part of an unsigned network module, that
is some genes will be simulated with a negative correlation with the seed eigengene (but of the same
absolute value that a positively correlated gene would be simulated with). The proportion of genes
with negative correlation is controlled by propNegativeCor.

Optionally, the function can also simulate genes that are "near" the module, meaning they are sim-
ulated with a low but non-zero correlation with the seed eigengene. The correlations run between
minCor and zero.

Value

A matrix containing the expression data with rows corresponding to samples and columns to genes.

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to
the article

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54.

The material is posted at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork/SupplementSimulations.pdf.

simulateMultiExpr 123

See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;

simulateDatExpr for simulations of whole datasets consisting of multiple modules;

simulateDatExpr5Modules for a simplified interface to expression simulations;

simulateMultiExpr for a simulation of several related data sets.

simulateMultiExpr function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

simulateMultiExpr(eigengenes, nGenes, modProportions, minCor = 0.5, maxCor = 1, corPower = 1, backgroundNoise = 0.1, leaveOut = NULL, signed = FALSE, propNegativeCor = 0.3, nSubmoduleLayers = 0, nScatteredModuleLayers = 0, averageNGenesInSubmodule = 10, averageExprInSubmodule = 0.2, submoduleSpacing = 2, verbose = 1, indent = 0)

Arguments

eigengenes Describe eigengenes here

nGenes Describe nGenes here
modProportions

Describe modProportions here

minCor Describe minCor here

maxCor Describe maxCor here

corPower Describe corPower here
backgroundNoise

Describe backgroundNoise here

leaveOut Describe leaveOut here

signed Describe signed here
propNegativeCor

Describe propNegativeCor here
nSubmoduleLayers

Describe nSubmoduleLayers here
nScatteredModuleLayers

Describe nScatteredModuleLayers here
averageNGenesInSubmodule

Describe averageNGenesInSubmodule here
averageExprInSubmodule

Describe averageExprInSubmodule here
submoduleSpacing

Describe submoduleSpacing here

verbose Describe verbose here

indent Describe indent here

124 simulateMultiExpr

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.8 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (eigengenes, nGenes, modProportions, minCor = 0.5, maxCor = 1,

corPower = 1, backgroundNoise = 0.1, leaveOut = NULL, signed = FALSE,
propNegativeCor = 0.3, nSubmoduleLayers = 0, nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10, averageExprInSubmodule = 0.2,
submoduleSpacing = 2, verbose = 1, indent = 0)

{
MEsize = checkSets(eigengenes)
NSets = MEsize$nSets
nMods = MEsize$nGenes

simulateSmallLayer 125

nSamples = MEsize$nSamples
nAllSamples = sum(nSamples)
d2 = length(modProportions) - 1
if (d2 != nMods)

stop(paste("Incompatible numbers of modules in 'eigengenes' and 'modProportions'"))
d3 = dim(leaveOut)
if ((d3[1] != nMods) | (d3[2] != NSets))

stop(paste("Incompatible dimensions of 'leaveOut' and set eigengenes."))
multiDatExpr = vector(mode = "list", length = NSets)
setLabels = NULL
allLabels = NULL
labelOrder = NULL
for (set in 1:NSets) {

SetEigengenes = scale(eigengenes[[set]]$data)
setLeaveOut = leaveOut[, set]
SetMinCor = rep(minCor, nMods)
SetMaxCor = rep(maxCor, nMods)
SetLO = c(1:nMods)[setLeaveOut]
setData = simulateDatExpr(SetEigengenes, nGenes, modProportions,

minCor = SetMinCor, maxCor = SetMaxCor, corPower = corPower,
signed = signed, propNegativeCor = propNegativeCor,
backgroundNoise = backgroundNoise, leaveOut = SetLO,
nSubmoduleLayers = nSubmoduleLayers, nScatteredModuleLayers = nScatteredModuleLayers,
averageNGenesInSubmodule = averageNGenesInSubmodule,
averageExprInSubmodule = averageExprInSubmodule,
submoduleSpacing = submoduleSpacing, verbose = verbose -

1, indent = indent + 1)
multiDatExpr[[set]] = list(data = setData$datExpr)
setLabels = cbind(setLabels, setData$setLabels)
allLabels = cbind(allLabels, setData$allLabels)
labelOrder = cbind(labelOrder, setData$labelOrder)

}
list(multiDatExpr = multiDatExpr, setLabels = setLabels,

allLabels = allLabels, labelOrder = labelOrder)
}

simulateSmallLayer Simulate small modules

Description

This function simulates a set of small modules. The primary purpose is to add a submodule structure
to the main module structure simulated by simulateDatExpr.

Usage

simulateSmallLayer(
order,
nSamples,
minCor = 0.3, maxCor = 0.5, corPower = 1,
averageModuleSize,
averageExpr,
moduleSpacing,
verbose = 4, indent = 0)

126 simulateSmallLayer

Arguments

order a vector giving the simulation order for vectors. See details.

nSamples integer giving the number of samples to be simulated.

minCor a multiple of maxCor (see below) giving the minimum correlation of module
genes with the corresponding eigengene. See details.

maxCor maximum correlation of module genes with the corresponding eigengene. See
details.

corPower controls the dropoff of gene-eigengene correlation. See details.
averageModuleSize

average number of genes in a module. See details.

averageExpr average strength of module expression vectors.
moduleSpacing

a number giving module spacing: this multiple of the module size will lie be-
tween the module and the next one.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Module eigenvectors are chosen randomly and independently. Module sizes are chosen randomly
from an exponential distribution with mean equal averageModuleSize. Two thirds of genes
in each module are simulated as proper module genes and one third as near-module genes (see
simulateModule for details). Between each successive pairs of modules a number of genes
given by moduleSpacing will be left unsimulated (zero expression). Module expression, that
is the expected standard deviation of the module expression vectors, is chosen randomly from an
exponential distribution with mean equal averageExpr. The expression profiles are chosen such
that their correlations with the eigengene run from just below maxCor to minCor * maxCor
(hence minCor must be between 0 and 1, not including the bounds). The parameter corPower
can be chosen to control the behaviour of the simulated correlation with the gene index; values
higher than 1 will result in the correlation approaching minCor * maxCor faster and lower than
1 slower.

The simulated genes will be returned in the order given in order.

Value

A matrix of simulated gene expressions, with dimension (nSamples, length(order)).

Author(s)

Peter Langfelder

See Also

simulateModule for simulation of individual modules;

simulateDatExpr for the main gene expression simulation function.

sizeGrWindow 127

sizeGrWindow Opens a graphics window with specified dimensions

Description

If a graphic device window is already open, it is closed and re-opened with specified dimensions (in
inches); otherwise a new window is opened.

Usage

sizeGrWindow(width, height)

Arguments

width desired width of the window, in inches.

height desired heigh of the window, in inches.

Value

None.

Author(s)

Peter Langfelder

softConnectivity Calculates connectivity of a weighted network.

Description

Given expression data, the function constructs the adjacency matrix and for each node calculates its
connectivity, that is the sum of the adjacency to the other nodes.

Usage

softConnectivity(
datExpr,
power = 6,
blockSize = 1500,
minNSamples = 10,
corFnc = "cor", corOptions = "use = 'p'",
verbose = 2, indent = 0)

128 standardColors

Arguments

datExpr a data frame containing the expression data, with rows corresponding to samples
and columns to genes.

power soft thresholding power.

blockSize block size in which adjacency is to be calculated. Too low (say below 100)
may make the calculation inefficient, while too high may cause R to run out
of physical memory and slow down the computer. Should be chosen such that
an array of doubles of size (number of genes) * (block size) fits into available
physical memory.

minNSamples minimum number of samples available for the calculation of adjacency for the
adjacency to be considered valid. If the number of samples falls below this
threshold, the adjacency will be excluded from the connectivity calculation.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Value

A vector with one entry per gene giving the connectivity of each gene in the weighted network.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency

standardColors Colors this library uses for labeling modules.

Description

Returns the vector of color names in the order they are assigned by other functions in this library.

Usage

standardColors(n = NULL)

stdErr 129

Arguments

n Number of colors requested. If NULL, all (approx. 450) colors will be re-
turned. Any other invalid argument such as less than one or more than maximum
(length(standardColors())) will trigger an error.

Value

A vector of character color names of the requested length.

Author(s)

Peter Langfelder, 〈Peter.Langfelder@gmail.com〉

Examples

standardColors(10);

stdErr standard error of the mean of a given vector.

Description

Returns the standard error of the mean of a given vector. Missing values are ignored.

Usage

stdErr(x)

Arguments

x a numeric vector

Value

Standard error of the mean of x.

Author(s)

Steve Horvath

130 TOMplot

TOMplot Graphical representation of the Topological Overlap Matrix

Description

Graphical representation of the Topological Overlap Matrix using a heatmap plot combined with
the corresponding hierarchical clustering dendrogram and module colors.

Usage

TOMplot(
dissim,
dendro,
colors = NULL,
colorsLeft = colors,
terrainColors = FALSE,
setLayout = TRUE,
...)

Arguments

dissim a matrix containing the topological overlap-based dissimilarity

dendro the corresponding hierarchical clustering dendrogram

colors optional specification of module colors to be plotted on top

colorsLeft optional specification of module colors on the left side. If NULL, colors will
be used.

terrainColors
logical: should terrain colors be used?

setLayout logical: should layout be set? If TRUE, standard layout for one plot will be
used. Note that this precludes multiple plots on one page. If FALSE, the user is
responsible for setting the correct layout.

... other graphical parameters to heatmap.

Details

The standard heatmap function uses the layout function to set the following layout (when
colors is given):

0 0 5
0 0 2
4 1 3

To get a meaningful heatmap plot, user-set layout must respect this geometry.

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

TOMsimilarityFromExpr 131

See Also

heatmap, the workhorse function doing the plotting.

TOMsimilarityFromExpr
Topological overlap matrix

Description

Calculation of the topological overlap matrix from given expression data.

Usage

TOMsimilarityFromExpr(
datExpr,
corType = "pearson",
networkType = "unsigned",
power = 6,
TOMType = "signed",
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and
bidweight midcorrelation, respectively. Missing values are handled using the
pairwise.complete.obs option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned",
"signed", "signed hybrid". See adjacency.

power soft-thresholding power for netwoek construction.

TOMType one of "none", "unsigned", "signed". If "none", adjacency will be
used for clustering. If "unsigned", the standard TOM will be used (more
generally, TOM function will receive the adjacency as input). If "signed",
TOM will keep track of the sign of correlations between neighbors.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Value

A matrix holding the topological overlap.

Author(s)

Peter Langfelder

132 TOMsimilarity

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarity

TOMsimilarity Topological overlap matrix similarity and dissimilarity

Description

Calculation of the topological overlap matrix from a given adjacency matrix.

Usage

TOMsimilarity(adjMat, TOMType = "unsigned", verbose = 1, indent = 0)
TOMdist(adjMat, TOMType = "unsigned", verbose = 1, indent = 0)

Arguments

adjMat adjacency matrix, that is a square, symmetric matrix with entries between 0 and
1 (negative values are allowed if TOMType=="signed").

TOMType a character string specifying TOM type to be calculated. One of "unsigned",
"signed". If "unsigned", the standard TOM will be used (more generally,
TOM function will receive the adjacency as input). If "signed", TOM will
keep track of the sign of the adjacency between neighbors.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The functions perform basically the same calculations of topological overlap. TOMdist turns the
overlap (which is a measure of similarity) into a measure of dissimilarity by subtracting it from 1.

Basic checks on the adjacency matrix are performed and missing entries are replaced by zeros. If
TOMType = "unsigned", entries of the adjacency matrix are required to lie between 0 and
1; for TOMType = "signed" they can be between -1 and 1. In both cases the resulting TOM
entries, as well as the corresponding dissimilarities, lie between 0 and 1.

Value

A matrix holding the topological overlap.

Author(s)

Peter Langfelder

unsignedAdjacency 133

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarityFromExpr

unsignedAdjacency Calculation of unsigned adjacency

Description

Calculation of the unsigned network adjacency from expression data. The restricted set of parame-
ters for this function should allow a faster and less memory-hungry calculation.

Usage

unsignedAdjacency(
datExpr,
datExpr2 = NULL,
power = 6,
corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
Missing values are ignored.

datExpr2 optional specification of a second set of expression data. See details.

power soft-thresholding power for network construction.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function

Details

The correlation function will be called with arguments datExpr, datExpr2 plus any extra
arguments given in corOptions. If datExpr2 is NULL, the standard correlation functions will
calculate the corelation of columns in datExpr.

Value

Adjacency matrix of dimensions n*n, where n is the number of genes in datExpr.

Author(s)

Steve Horvath and Peter Langfelder

134 vectorTOM

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency

vectorTOM Topological overlap for a subset of the whole set of genes

Description

This function calculates topological overlap of a small set of vectors with respect to a whole data
set.

Usage

vectorTOM(
datExpr,
vect,
subtract1 = FALSE,
blockSize = 2000,
corFnc = "cor", corOptions = "use = 'p'",
type = "unsigned",
power = 6,
verbose = 1, indent = 0)

Arguments

datExpr a data frame containing the expression data of the whole set, with rows corre-
sponding to samples and columns to genes.

vect a single vector or a matrix-like object containing vectors whose topological over-
lap is to be calculated.

subtract1 logical: should calculation be corrected for self-correlation? Set this to TRUE if
\vect contains a subset of datExpr.

blockSize maximum block size for correlation calculations. Only important if vect con-
tains a large number of columns.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function.
type character string giving network type. Allowed values are (unique abbreviations

of) "unsigned", "signed", "signed hybrid". See adjacency.
power soft-thresholding power for network construction.
verbose integer level of verbosity. Zero means silent, higher values make the output

progressively more and more verbose.
indent indentation for diagnostic messages. Zero means no indentation, each unit adds

two spaces.

verboseBoxplot 135

Details

Topological overlap can be viewed as the normalized count of shared neighbors encoded in an
adjacency matrix. In this case, the adjacency matrix is calculated between the columns of vect
and datExpr and the topological overlap of vectors in vect measures the number of shared
neighbors in datExpr that vectors of vect share.

Value

A matrix of dimensions n*n, where n is the number of columns in vect.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarity for standard calculation of topological overlap.

verboseBoxplot function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

verboseBoxplot(x, g, main = "", xlab = NA, ylab = NA, cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5, ylim = -1, ...)

Arguments

x Describe x here

g Describe g here

main Describe main here

xlab Describe xlab here

ylab Describe ylab here

cex Describe cex here

cex.axis Describe cex.axis here

cex.lab Describe cex.lab here

cex.main Describe cex.main here

ylim Describe ylim here

... Describe ... here

136 verboseBoxplot

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Warning

....

Note

further notes

Make other sections like Warning with

0.9 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (x, g, main = "", xlab = NA, ylab = NA, cex = 1, cex.axis = 1.5,

cex.lab = 1.5, cex.main = 1.5, ylim = -1, ...)
{

if (is.na(xlab))
xlab = as.character(match.call(expand.dots = FALSE)$x)

if (is.na(ylab))
ylab = as.character(match.call(expand.dots = FALSE)$g)

p1 = signif(kruskal.test(x, factor(g))$p.value, 2)
if (p1 < 5 * 10^(-22))

verboseScatterplot 137

p1 = "< 5e-22"
boxplot(x ~ factor(g), notch = TRUE, varwidth = TRUE, main = paste(main,

", p =", as.character(p1)), xlab = xlab, ylab = ylab,
cex = cex, cex.axis = cex.axis, cex.lab = cex.lab, cex.main = cex.main,
...)

}

verboseScatterplot function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

verboseScatterplot(x, y, corFnc = "cor", corOptions = "use = 'p'", main = "", xlab = NA, ylab = NA, cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5, ylim = -1, abline = FALSE, ...)

Arguments

x Describe x here

y Describe y here

corFnc Describe corFnc here

corOptions Describe corOptions here

main Describe main here

xlab Describe xlab here

ylab Describe ylab here

cex Describe cex here

cex.axis Describe cex.axis here

cex.lab Describe cex.lab here

cex.main Describe cex.main here

ylim Describe ylim here

abline Describe abline here

... Describe ... here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

138 verboseScatterplot

Warning

....

Note

further notes

Make other sections like Warning with

0.10 Warning

....

Author(s)

who you are

References

put references to the literature/web site here

See Also

objects to See Also as help,

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function (x, y, corFnc = "cor", corOptions = "use = 'p'", main = "",

xlab = NA, ylab = NA, cex = 1, cex.axis = 1.5, cex.lab = 1.5,
cex.main = 1.5, ylim = -1, ...)

{
if (is.na(xlab))

xlab1 = as.character(match.call(expand.dots = FALSE)$x)
if (is.na(ylab))

ylab1 = as.character(match.call(expand.dots = FALSE)$y)
x = as.numeric(as.character(x))
y = as.numeric(as.character(y))
corExpr = parse(text = paste(corFnc, "(x, y, ", corOptions,

")"))
cor1 = signif(eval(corExpr), 2)
corpExpr = parse(text = paste("cor.test(x, y, ", corOptions,

")"))
corp = signif(eval(corpExpr)$p.value, 2)
if (corp < 10^(-20))

corp = "<10^{-20}"
if (length(ylim) == 2) {

plot(x, y, main = paste(main, " cor=", cor1, " p=", corp,
sep = ""), xlab = xlab, ylab = ylab, cex = cex, cex.axis = cex.axis,
cex.lab = cex.lab, cex.main = cex.main, ylim = ylim,
...)

WGCNA-package 139

}
else {

plot(x, y, main = paste(main, " cor=", cor1, " p=", corp,
sep = ""), col = as.character(col), xlab = xlab,
ylab = ylab, cex = cex, cex.axis = cex.axis, cex.lab = cex.lab,
cex.main = cex.main, ...)

}
}

WGCNA-package Weighted Gene Co-Expression Network Analysis

Description

Functions necessary to perform Weighted Gene Co-Expression Network Analysis

Details

Package: WGCNA
Version: 0.67-2
Date: 2009-01-26
Depends: R (>= 2.3.0), stats, fields, impute, grDevices, dynamicTreeCut (>= 1.12), qvalue
ZipData: no
License: GPL (>= 2)
URL: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/

Index:

GTOMdist Generalized Topological Overlap Measure
TOMdist Topological overlap matrix dissimilarity
TOMplot ~~function to do ... ~~
TOMsimilarity Topological overlap matrix similarity
TOMsimilarityFromExpr Topological overlap matrix similarity
WGCNA-package Weighted Gene Co-Expression Network Analysis
addErrorBars Add error bars to a barplot.
addGrid Add grid lines to an existing plot.
addGuideLines Add vertical "guide lines" to a dendrogram plot
addTraitToMEs Add trait information to multi-set module

eigengene structure
adjacency Calculate network adjacency
alignExpr Align expression data with given vector
automaticNetworkScreening

~~function to do ... ~~
automaticNetworkScreeningGS

One-step automatic network gene screening with
external gene significance

bicor Biweight Midcorrelation
blockwiseConsensusModules

Find consensus modules across several datasets.
blockwiseModules Automatic network construction and module

detection

140 WGCNA-package

checkAdjMat Check adjacency matrix
checkSets Check structure and retrieve sizes of a group

of datasets
clusterCoef Clustering coefficient calculation
collectGarbage Iterative garbage collection
colQuantileC Fast colunm-wise quantile of a matrix
consensusMEDissimilarity

Consensus dissimilarity of module eigengenes.
consensusOrderMEs Put close eigenvectors next to each other in

several sets.
consensusProjectiveKMeans

Consensus projective K-means (pre-)clustering
of expression data

corPredictionSuccess ~~function to do ... ~~
corPvalueFisher Fisher's asymptotic p-value for correlation
corPvalueStudent Student asymptotic p-value for correlation
correlationPreservation

Preservation of eigengene correlations
cutreeStatic Constant height tree cut
cutreeStaticColor Constant height tree cut using color labels
displayColors Show colors used to label modules
dynamicMergeCut Threshold for module merging
exportNetworkToVisANT Export network data in format readable by VisANT
exportNetworkToCytoscape

Export network data in format readable by Cytoscape
fixDataStructure Put single-set data into a form useful for

multiset calculations
goodGenes Filter genes with too many missing entries
goodGenesMS Filter genes with too many missing entries across multiple sets
goodSamples Filter samples with too many missing entries
goodSamplesGenes Iterative filtering of samples and genes with

too many missing entries
goodSamplesGenesMS Iterative filtering of samples and genes with too many missing entries across

multiple data sets
goodSamplesMS Filter samples with too many missing entries across multiple data sets
greenBlackRed Green-black-red color sequence
greenWhiteRed Green-white-red color sequence
hubGeneSignificance Hubgene significance
initProgInd Inline display of progress
intramodularConnectivity

Calculation of intramodular connectivity
keepCommonProbes Keep probes that are shared among given data sets
labeledBarplot Barplot with text or color labels
labeledHeatmap Produce a labeled heatmap plot
labels2colors Convert numerical labels to colors
mergeCloseModules Merge close modules in gene expression data
moduleColor.getMEprefix

Get the prefix used to label module eigengenes
moduleEigengenes Calculate module eigengenes
moduleNumber Fixed-height cut of a dendrogram
multiSetMEs Calculate module eigengenes
nPresent Number of present data entries

WGCNA-package 141

nearestNeighborConnectivity
Connectivity to a constant number of nearest
neighbors

nearestNeighborConnectivityMS
Connectivity to a constant number of nearest
neighbors across multiple data sets

networkConcepts Calculations of network concepts
networkScreening ~~function to do ... ~~
networkScreeningGS ~~function to do ... ~~
normalizeLabels Transform numerical labels into normal order
numbers2colors Color representation for a numeric variable
orderMEs Put close eigenvectors next to each other
pickHardThreshold Analysis of scale free topology for

hard-thresholding.
pickSoftThreshold Analysis of scale free topology for

soft-thresholding
plotClusterTreeSamples

Annotated clustering dendrogram of microarray
samples

plotColorUnderTree Plot color rows under a dendrogram
plotDendroAndColors Dendrogram plot with color annotation of

objects
plotEigengeneNetworks Eigengene network plot
plotMEpairs Pairwise scatterplots of eigengenes
plotModuleSignificance

Barplot of module significance
plotNetworkHeatmap Network heatmap plot
preservationNetworkConnectivity

Network preservation calculations
projectiveKMeans Projective K-means (pre-)clustering of

expression data
propVarExplained Proportion of variance explained by eigengenes.
randIndex ~~function to do ... ~~
recutBlockwiseTrees Repeat blockwise module detection from

pre-calculated data
recutConsensusTrees Repeat blockwise consensus module detection

from pre-calculated data
redWhiteGreen Red-white-green color sequence
relativeCorPredictionSuccess

~~function to do ... ~~
removeGreyME Removes the grey eigengene from a given

collection of eigengenes.
scaleFreePlot Visual check of scale-free topology
setCorrelationPreservation

Summary correlation preservation measure
sigmoidAdjacencyFunction

Sigmoid-type adacency function.
signedKME Signed eigengene-based connectivity
signumAdjacencyFunction

Hard-thresholding adjacency function
simulateDatExpr Simulation of expression data
simulateDatExpr5Modules

142 WGCNA-package

simulateEigengeneNetwork
Simulate eigengene network from a causal model

simulateModule Simulate a gene co-expression module
simulateMultiExpr ~~function to do ... ~~
simulateSmallLayer ~~function to do ... ~~
sizeGrWindow ~~function to do ... ~~
softConnectivity ~~function to do ... ~~
standardColors Colors this library uses for labeling modules.
stdErr ~~function to do ... ~~
unsignedAdjacency ~~function to do ... ~~
vectorTOM ~~function to do ... ~~
verboseBoxplot ~~function to do ... ~~
verboseScatterplot ~~function to do ... ~~

Author(s)

Peter Langfelder <Peter.Langfelder@gmail.com> and Steve Horvath <SHorvath@mednet.ucla.edu>

Maintainer: Peter Langfelder <Peter.Langfelder@gmail.com>

Index

∗Topic kwd1
addGuideLines, 3
automaticNetworkScreening, 8
corPredictionSuccess, 28
networkScreening, 73
networkScreeningGS, 71
randIndex, 98
relativeCorPredictionSuccess,

107
simulateMultiExpr, 121
verboseBoxplot, 133
verboseScatterplot, 135

∗Topic kwd2
addGuideLines, 3
automaticNetworkScreening, 8
corPredictionSuccess, 28
networkScreening, 73
networkScreeningGS, 71
randIndex, 98
relativeCorPredictionSuccess,

107
simulateMultiExpr, 121
verboseBoxplot, 133
verboseScatterplot, 135

∗Topic cluster
consensusProjectiveKMeans, 26
moduleNumber, 63
projectiveKMeans, 96

∗Topic color
greenBlackRed, 46
greenWhiteRed, 46
labels2colors, 56
redWhiteGreen, 107
standardColors, 126

∗Topic hplot
addErrorBars, 1
addGrid, 2
labeledBarplot, 52
labeledHeatmap, 53
plotClusterTreeSamples, 83
plotColorUnderTree, 85
plotDendroAndColors, 86
plotEigengeneNetworks, 88

plotMEpairs, 90
plotModuleSignificance, 91
plotNetworkHeatmap, 92

∗Topic misc
addTraitToMEs, 4
adjacency, 5
alignExpr, 6
automaticNetworkScreeningGS,

7
blockwiseConsensusModules, 11
blockwiseModules, 17
checkAdjMat, 21
checkSets, 22
clusterCoef, 23
colQuantileC, 24
consensusMEDissimilarity, 24
consensusOrderMEs, 25
corPvalueFisher, 30
corPvalueStudent, 31
correlationPreservation, 32
cutreeStatic, 33
cutreeStaticColor, 33
displayColors, 34
dynamicMergeCut, 35
exportNetworkToCytoscape, 36
exportNetworkToVisANT, 37
fixDataStructure, 38
goodGenes, 40
goodGenesMS, 39
goodSamples, 44
goodSamplesGenes, 42
goodSamplesGenesMS, 41
goodSamplesMS, 43
GTOMdist, 47
hubGeneSignificance, 48
Inline display of progress,

49
intramodularConnectivity, 50
keepCommonProbes, 51
mergeCloseModules, 57
moduleColor.getMEprefix, 59
moduleEigengenes, 60
multiSetMEs, 64

143

144 INDEX

nearestNeighborConnectivity,
68

nearestNeighborConnectivityMS,
67

networkConcepts, 70
normalizeLabels, 77
nPresent, 77
numbers2colors, 78
orderMEs, 79
pickHardThreshold, 80
pickSoftThreshold, 81
plotClusterTreeSamples, 83
plotModuleSignificance, 91
preservationNetworkConnectivity,

94
propVarExplained, 97
recutBlockwiseTrees, 100
recutConsensusTrees, 103
removeGreyME, 109
scaleFreePlot, 110
setCorrelationPreservation,

111
sigmoidAdjacencyFunction, 112
signedKME, 113
signumAdjacencyFunction, 114
simulateDatExpr, 116
simulateDatExpr5Modules, 114
simulateEigengeneNetwork, 118
simulateModule, 119
simulateSmallLayer, 123
sizeGrWindow, 125
softConnectivity, 125
standardColors, 126
stdErr, 127
TOMplot, 128
TOMsimilarity, 130
TOMsimilarityFromExpr, 129
unsignedAdjacency, 131
vectorTOM, 132

∗Topic package
WGCNA-package, 137

∗Topic robust
bicor, 10

∗Topic utilities
collectGarbage, 23

abline, 84, 87
addErrorBars, 1
addGrid, 2
addGuideLines, 3
addTraitToMEs, 4
adjacency, 5, 13, 16, 18, 21, 27, 51, 68, 69,

82, 93, 96, 101, 104, 114, 126, 129,

132
alignExpr, 6
automaticNetworkScreening, 8
automaticNetworkScreeningGS, 7

barplot, 52, 92
bicor, 10
blockwiseConsensusModules, 11, 28,

103, 105, 106
blockwiseModules, 17, 100, 102, 103
boxplot, 92

checkAdjMat, 21
checkSets, 5, 12, 22, 25–27, 32, 38, 39, 41,

44, 51, 52, 57, 64, 79, 88, 94, 104,
110

clusterCoef, 23
collectGarbage, 23
colors, 55
colQuantileC, 24
consensusMEDissimilarity, 24
consensusOrderMEs, 25, 80
consensusProjectiveKMeans, 15, 26
corPredictionSuccess, 28
corPvalueFisher, 30
corPvalueStudent, 31
correlationPreservation, 32
cutree, 33, 34, 63
cutreeDynamic, 8, 13, 14, 16, 18, 21, 86,

101, 103–106
cutreeStatic, 33, 33, 34
cutreeStaticColor, 33

displayColors, 34
dist, 16, 84
dynamicMergeCut, 35

exportNetworkToCytoscape, 36
exportNetworkToVisANT, 36, 37

fixDataStructure, 38

goodGenes, 40, 40, 42–44
goodGenesMS, 39, 42, 44
goodSamples, 40–43, 44, 44, 45
goodSamplesGenes, 21, 40, 41, 42, 42, 44,

45, 101
goodSamplesGenesMS, 16, 40, 41, 44, 104
goodSamplesMS, 40, 42, 43
greenBlackRed, 46
greenWhiteRed, 46
GTOMdist, 47

hclust, 3, 16, 21, 33, 34, 63, 84–86, 90

INDEX 145

heat.colors, 54, 89
heatmap, 54, 55, 128, 129
help, 3, 9, 29, 72, 74, 99, 108, 122, 134, 136
hubGeneSignificance, 8, 48

image.plot, 54, 55
initProgInd (Inline display of

progress), 49
Inline display of progress, 49
intramodularConnectivity, 50

keepCommonProbes, 51

labeledBarplot, 52, 90
labeledHeatmap, 53, 90
labels2colors, 56, 79
layout, 128
load, 14, 19

mergeCloseModules, 15, 16, 19, 21, 35,
57, 102, 103, 106

moduleColor.getMEprefix, 59
moduleEigengenes, 5, 14, 19, 26, 35, 57,

60, 60, 65, 67, 80, 98, 102, 105
moduleNumber, 63
multiSetMEs, 15, 26, 32, 64, 80, 106, 112

nearestNeighborConnectivity, 68,
68

nearestNeighborConnectivityMS, 67
networkConcepts, 70
networkScreening, 8, 73
networkScreeningGS, 7, 8, 71
normalizeLabels, 63, 77
nPresent, 77
numbers2colors, 78

orderMEs, 25, 26, 79

pairs, 91
par, 2, 3, 54, 84, 85, 88, 89
pdf, 90
pickHardThreshold, 80
pickSoftThreshold, 81
plot, 92
plot.hclust, 84, 87
plotClusterTreeSamples, 83
plotColorUnderTree, 85, 87
plotDendroAndColors, 84, 86, 86
plotEigengeneNetworks, 88, 112
plotMEpairs, 90
plotModuleSignificance, 91
plotNetworkHeatmap, 92
postscript, 90

preservationNetworkConnectivity,
94

projectiveKMeans, 19, 28, 96
propVarExplained, 97

quantile, 24

randIndex, 98
recutBlockwiseTrees, 100
recutConsensusTrees, 103
redWhiteGreen, 89, 107
relativeCorPredictionSuccess, 107
removeGreyME, 109

scaleFreePlot, 110
setCorrelationPreservation, 111
sigmoidAdjacencyFunction, 112
signedKME, 113
signumAdjacencyFunction, 81, 114
simulateDatExpr, 115, 116, 121, 123,

124
simulateDatExpr5Modules, 114, 118,

121
simulateEigengeneNetwork, 118, 118,

121
simulateModule, 115, 118, 119, 124
simulateMultiExpr, 118, 121, 121
simulateSmallLayer, 123
sizeGrWindow, 125
softConnectivity, 68, 69, 82, 111, 125
standardColors, 33–35, 126
stdErr, 127
svd, 63

TOMdist (TOMsimilarity), 130
TOMplot, 128
TOMsimilarity, 16, 21, 93, 130, 130, 133
TOMsimilarityFromExpr, 129, 131

unsignedAdjacency, 131
updateProgInd (Inline display of

progress), 49

vectorTOM, 132
verboseBoxplot, 133
verboseScatterplot, 135

WGCNA (WGCNA-package), 137
WGCNA-package, 137

	addErrorBars
	addGrid
	addGuideLines
	Warning
	addTraitToMEs
	adjacency
	alignExpr
	automaticNetworkScreeningGS
	automaticNetworkScreening
	Warning
	bicor
	blockwiseConsensusModules
	blockwiseModules
	checkAdjMat
	checkSets
	clusterCoef
	collectGarbage
	colQuantileC
	consensusMEDissimilarity
	consensusOrderMEs
	consensusProjectiveKMeans
	corPredictionSuccess
	Warning
	corPvalueFisher
	corPvalueStudent
	correlationPreservation
	cutreeStaticColor
	cutreeStatic
	displayColors
	dynamicMergeCut
	exportNetworkToCytoscape
	exportNetworkToVisANT
	fixDataStructure
	goodGenesMS
	goodGenes
	goodSamplesGenesMS
	goodSamplesGenes
	goodSamplesMS
	goodSamples
	greenBlackRed
	greenWhiteRed
	GTOMdist
	hubGeneSignificance
	Inline display of progress
	intramodularConnectivity
	keepCommonProbes
	labeledBarplot
	labeledHeatmap
	labels2colors
	mergeCloseModules
	moduleColor.getMEprefix
	moduleEigengenes
	moduleNumber
	multiSetMEs
	nearestNeighborConnectivityMS
	nearestNeighborConnectivity
	networkConcepts
	networkScreeningGS
	Warning
	networkScreening
	Warning
	normalizeLabels
	nPresent
	numbers2colors
	orderMEs
	pickHardThreshold
	pickSoftThreshold
	plotClusterTreeSamples
	plotColorUnderTree
	plotDendroAndColors
	plotEigengeneNetworks
	plotMEpairs
	plotModuleSignificance
	plotNetworkHeatmap
	preservationNetworkConnectivity
	projectiveKMeans
	propVarExplained
	randIndex
	Warning
	recutBlockwiseTrees
	recutConsensusTrees
	redWhiteGreen
	relativeCorPredictionSuccess
	Warning
	removeGreyME
	scaleFreePlot
	setCorrelationPreservation
	sigmoidAdjacencyFunction
	signedKME
	signumAdjacencyFunction
	simulateDatExpr5Modules
	simulateDatExpr
	simulateEigengeneNetwork
	simulateModule
	simulateMultiExpr
	Warning
	simulateSmallLayer
	sizeGrWindow
	softConnectivity
	standardColors
	stdErr
	TOMplot
	TOMsimilarityFromExpr
	TOMsimilarity
	unsignedAdjacency
	vectorTOM
	verboseBoxplot
	Warning
	verboseScatterplot
	Warning
	WGCNA-package
	Index

